DESIGN FLOOD ESTIMATION TOOL USER MANUAL VERSION 1.4

Copyright © 2019 Stellenbosch University

DESIGN FLOOD ESTIMATION TOOL

USER MANUAL VERSION 1.4

Copyright © 2019 Stellenbosch University All rights reserved

OJ Gericke Pr Eng.^{1,2} and JA du Plessis Pr Eng.²

 ¹Faculty of Engineering and Information Technology, Department of Civil Engineering, Central University of Technology, Free State, South Africa
 ²Department of Civil Engineering, University of Stellenbosch, P/Bag X1, MATIELAND 7602, South Africa

FLOOD HYDROLOGY COURSE

Institute for Water and Environmental Engineering Department of Civil Engineering Stellenbosch University 22- 24 May 2023

TABLE OF CONTENTS

				Page
	Title	Page		i
	Table	e of Cont	tents	ii
	List o	of Tables	s	V
	List o	of Figure	es	V
	List o	of Abbre	eviations	vii
1.	OPE	RATION	NAL INSTRUCTIONS	1
	1.1	Minin	num System Requirements	1
	1.2	Install	lation of Software	2
	1.3	Runni	ing of Software	2
2.	APPI	LICATI	ON GUIDELINES AND INSTRUCTIONS	3
	2.1	HOM	E Page	3
		2.1.1	Database and design tables	3
		2.1.2	Design flood estimation methods	4
		2.1.3	Graphical plots	4
		2.1.4	GIS-based maps	6
	2.2	Catch	ment Information	6
		2.2.1	Pre-requisite input and linked worksheets	6
		2.2.2	Input ranges and comments	7
		2.2.3	Calculation procedure	9
	2.3	Desig	n Rainfall	10
		2.3.1	Pre-requisite input and linked worksheets	11
		2.3.2	Input ranges and comments	11
		2.3.3	Calculation procedure	17
	2.4	Avera	age Catchment Slope	17
		2.4.1	Pre-requisite input and linked worksheets	17
		2.4.2	Input ranges and comments	17
		2.4.3	Calculation procedure	19

			Page
2.5	Averag	ge Main Watercourse Slope	20
	2.5.1	Pre-requisite input and linked worksheets	20
	2.5.2	Input ranges and comments	20
	2.5.3	Calculation procedure	21
2.6	Ration	al Method (RM)	23
	2.6.1	Pre-requisite input and linked worksheets	23
	2.6.2	Input ranges and comments	23
	2.6.3	Calculation procedure	26
2.7	Altern	ative Rational Method (ARM)	30
	2.7.1	Pre-requisite input and linked worksheets	30
	2.7.2	Input ranges and comments	30
	2.7.3	Calculation procedure	30
2.8	Soil C	onservation Services (SCS) Method	33
	2.8.1	Pre-requisite input and linked worksheets	33
	2.8.2	Input ranges and comments	33
	2.8.3	Calculation procedure	35
2.9	Standa	rd Design Flood (SDF) Method	
	2.9.1	Pre-requisite input and linked worksheets	
	2.9.2	Input ranges and comments	
	2.9.3	Calculation procedure	
2.10	Synthe	etic Unit Hydrograph (SUH) Method	42
	2.10.1	Pre-requisite input and linked worksheets	42
	2.10.2	Input ranges and comments	42
	2.10.3	Calculation procedure	46
2.11	Lag-ro	outed Hydrograph (LRH) Method	50
	2.11.1	Pre-requisite input and linked worksheets	50
	2.11.2	Input ranges and comments	50
	2.11.3	Calculation procedure	51
2.12	Empiri	ical Methods	55
	2.12.1	Pre-requisite input and linked worksheets	55
	2.12.2	Input ranges and comments	55
	2.12.3	Calculation procedure	56

				Page
3.	PRO	BABILIS	STIC METHODS	60
	3.1	Annua	al Maximum Series (AMS)	60
		3.1.1	Pre-requisite input and linked worksheets	60
		3.1.2	Input ranges and comments	60
		3.1.3	Calculation procedure	61
	3.2	Probal	bilistic Methods (AMS)	63
		3.2.1	Pre-requisite input and linked worksheets	
		3.2.2	Input ranges and comments	63
		3.2.3	Calculation procedure	63
	3.3	Raw F	Flow Data (Partial Duration Series)	
		3.3.1	Pre-requisite input and linked worksheets	
		3.3.2	Input ranges and comments	68
		3.3.3	Calculation procedure	69
	3.4 Partial Duration Series (PDS)		l Duration Series (PDS)	69
		3.4.1	Pre-requisite input and linked worksheets	69
		3.4.2	Input ranges and comments	69
		3.4.3	Calculation procedure	70
	3.5	Probal	bilistic Methods (PDS)	71
		3.5.1	Pre-requisite input and linked worksheets	71
		3.5.2	Input ranges and comments	71
		3.5.3	Calculation procedure	71
	3.6	Probal	bilistic Plotting	72
		3.6.1	Pre-requisite input and linked worksheets	72
		3.6.2	Input ranges and comments	72
		3.6.3	Calculation procedure	78
4.	SUM	IMARY.		
	4.1	Summ	nary Report	
	4.2	Summ	nary Plot	83
5.	REF	ERENCF	ES	

LIST OF TABLES

Table 1: Correction factors (τ) for T_C	
Table 2: Generalised regional SUH veld-type coefficients	
Table 3: Regional LRH veld-type coefficients	
Table 4: RMF regional classification in Southern Africa	58
Table 5: Common plotting position methods	78

LIST OF FIGURES

Page

Figure 1: Microsoft Office Security Options	3
Figure 2: DFET HOME page	4
Figure 3: Schematic layout of the DFET	5
Figure 4: Catchment Information worksheet	6
Figure 5: SAWS reference grid map	12
Figure 6: Example of the SAWS daily rainfall station selection and entries	13
Figure 7: Example of averaged MAP and design rainfall depths	14
Figure 8: Design rainfall results group box	14
Figure 9: Average number of thunder days per year	15
Figure 10: Example of the 1' x 1' Grid RLMA&SI design rainfall entries	16
Figure 11: Example of the <i>Catchment Slope</i> worksheet	18
Figure 12: Layout of the Channel Slope worksheet	22
Figure 13: Example of the main watercourse longitudinal profile plot	23
Figure 14: Rural and urban runoff coefficients applicable to the RM	25
Figure 15: Design information and estimation results	29
Figure 16: Design rainfall and physical catchment information (ARM)	32
Figure 17: Design rainfall information and associated peak flows	32
Figure 18: Initial weighted CN values	34
Figure 19: General catchment, design rainfall and runoff volume information	37
Figure 20: Physical catchment characteristics, T_C , T_L and peak flow estimation	37
Figure 21: SDF Method worksheet	40
Figure 22: SDF regional map of South Africa	41

	Page
Figure 23: SUH method design rainfall information	43
Figure 24: SUH S-curve lagging results	45
Figure 25: Peak flow adjustments and summary	46
Figure 26: Average storm losses	49
Figure 27: Regions with generalised veld-types in South Africa	49
Figure 28: LRH veld-type regions and Muskingum routing factors	52
Figure 29: Rainfall distribution over time curves	53
Figure 30: Rainfall distribution over time and Muskingum routing results	54
Figure 31: Physical catchment characteristics screen of Empirical methods	56
Figure 32: Empirical flood estimation results	59
Figure 33: Maximum flood peak (Kovács) regions in Southern Africa	59
Figure 34: Annual Maximum Series worksheet with SRAM functionality	62
Figure 35: Probabilistic Methods (AMS) worksheet and conservation statistics	65
Figure 36: Theoretical probability distribution results based on the AMS	68
Figure 37: Partial Duration Series worksheet	70
Figure 38: Layout of the Probabilistic Methods (PDS) worksheet	72
Figure 39: Edit Series window (Probabilistic Plot, AMS)	73
Figure 40: Edit Series window (Probabilistic Plot, PDS)	76
Figure 41: Example illustrating the MLVA based on Equation 82 (AMS)	80
Figure 42: Example illustrating the MLVA based on Equation 82 (PDS)	80
Figure 43: Probabilistic plot based on the ranked AMS and Cunnane plotting position	n 81
Figure 44: Probabilistic plot based on the ranked PDS and Cunnane plotting position	81
Figure 45: Summary of results (tabular format)	82
Figure 46: Summary of results (chart)	83

LIST OF ABBREVIATIONS

AMS	Annual Maximum Series
ARF	Areal Reduction Factor
ARM	Alternative Rational Method
CAPA	Catchment Parameter method
CN	Curve Number
DDF	Depth-duration-frequency
DEM	Digital Elevation Model
DFET	Design Flood Estimation Tool
DWA	Department of Water Affairs
EV1	Extreme Value Type 1
EV2	Extreme Value Type 2
EV3	Extreme Value Type 3
GEV	General Extreme Value
GIS	Geographical Information System
HRU	Hydrological Research Unit
LEV1	Log-Extreme Value 1
LM	Linear Moments
LN	Log-Normal
LP3	Log-Pearson Type III
LRH	Lag-routed Hydrograph
MAF	Mean Annual Flood
MAP	Mean Annual Precipitation
MIPI	Midgley and Pitman method
MM	Mean Moments
MS-Excel	Microsoft Office Excel
MS-VBA	Microsoft Office Visual Basic for Applications
PDS	Partial Duration Series
RLMA	Regional Linear Moment Algorithm
RLMA&SI	Regional Linear Moment Algorithm and Scale Invariance
RM	Rational Method
RMF	Regional Maximum Flood
SANRAL	South African National Roads Agency Limited
SAWS	South African Weather Services
SCS	Soil Conservation Services
SDF	Standard Design Flood
SUH	Synthetic Unit Hydrograph
TR	Technical Report

1. OPERATIONAL INSTRUCTIONS

А with interface. computer program а graphical user known the as Design Flood Estimation Tool (DFET) Version 1.4, has been developed and programmed by using Microsoft Office Visual Basic for Applications (MS-VBA) with Microsoft Office Excel 2007 as the operating environment. The DFET contains the latest design rainfall information and recognised design flood estimation methods used in South African flood hydrology.

Disclaimer:

Although every effort has been made as to the accuracy and applicability contained in this software and supporting databases, the Stellenbosch University and the developer cannot accept any legal responsibility or liability for any errors or omissions or for any other reason whatsoever.

Copyright © 2019 Stellenbosch University All rights reserved

The objective of the first section in this user manual is to assist users with the installation and running of the software. The sections thereafter present the application guidelines and instructions.

1.1 Minimum System Requirements

The minimum system requirements on a computer running the Windows operating system are:

- (a) 512 Mb of RAM;
- (b) 150 Mb Hard Disk capacity;
- (c) Windows 2000/2000XP or more recent Windows operating system; and
- (d) Microsoft Office 2007 or more recent versions.

Note:

- The DFET is not compatible with Microsoft Office 2003 products.
- The unprotected, light-green shaded cells in each worksheet are used as the primary input cells and must contain no information before commencing with a new example. Thus, any information entered in previous application files/examples must be deleted.

1.2 Installation of Software

The software may be installed from the CD which accompanies this report. The following files are contained on the CD:

- (a) DFET Version 1-4.xlsm (MS-Excel Macro-enabled worksheet);
- (b) DFET User Manual 1-4.pdf (Adobe Acrobat 9.0 document); and
- (c) RLMA-SAWS Design Rainfall.pdf (Adobe Acrobat 9.0 document);

It is suggested that these files be saved in the *C*:*Design Flood*\directory, as the instructions in this manual will assume that the files are at that location. However, any user-defined directory can be used, and the relevant path will need to be substituted in these instructions.

1.3 Running of Software

Once these files are saved in the applicable directory, the DFET can be executed by running MS-Excel 2007 from Start\Programs\Microsoft Office\Microsoft Office Excel 2007 or by double-clicking the MS-Excel 2007 icon on the desktop.

Make use of the following steps:

- (a) In MS-Excel 2007 click on the button and select open and browse to the relevant directory and DFET Version 1-4.xlsm file.
- (b) Once the file is opened, a *Security Warning* (Macros have been disabled) will be displayed.
- (c) Click on the *Options* button, after which the window displayed in Figure 1 will appear.
- (d) Select the option button next to *Enable this content*.
- (e) Click OK.
- (f) Save the DFET Version 1-4.xlsm file by making use of *Save As* and rename the file as desired. This must be done in order to retain the original template file in the C:\Design Flood\directory.

Microsoft Office Security Options	×
Gecurity Alert - Macro	
Macro Macros have been disabled. Macros might contain viruses or other security hazards. Do not enable this content unless you trust the source of this file.	
Warning: It is not possible to determine that this content came from a trustworthy source. You should leave this content disabled unless the content provides critical functionality and you trust its source.	
More information	
File Path: C:\Design Flood\DFET Version 1-2.xlsm	
 Help protect me from unknown content (recommended) 	
Enable this content	
Open the Trust Center OK Cancel]

Figure 1: Microsoft Office Security Options

2. APPLICATION GUIDELINES AND INSTRUCTIONS

2.1 HOME Page

The HOME page enables the user to examine and view the contents of the relevant databases and design tables, design flood estimation methods, GIS-based maps and graphical plots contained in the various worksheets. It also serves as the primary worksheet with *click buttons* which activate macros to direct or redirect the user to any required worksheet. Figure 2 is illustrative of the HOME page as contained in the DFET, while the schematic layout of the DFET is shown in Figure 3.

2.1.1 Database and design tables

This group of 15 *click buttons* either enable the user to view, examine, edit and update the applicable worksheets or only view the content thereof. The *Catchment Information, Design Rainfall, SUH S-curve Lag, Raw Flow Data, Annual Maximum* and *Partial Duration Series* and *Probabilistic Plotting* worksheets are available for editing and updating, while the remaining eight worksheets are for viewing purposes only.

Figure 2: DFET HOME page

2.1.2 Design flood estimation methods

Nine *click buttons* in this group give the user access to the deterministic, empirical and probabilistic methods used in South Africa to estimate the design flood. The editing and updating of all these worksheets are allowed, although the user input is restricted to the light-green shaded, unprotected cells. The **SUMMARY** and **SUMMARY PLOT** buttons enable the user to view and examine the design flood estimation results summarised in both a tabular and graphical format.

2.1.3 Graphical plots

This group of six *click buttons* enable the user to view, examine, edit and update the graphical plot results as obtained from the catchment information entries and design flood estimation methods listed in Figure 3. It also allows the user to view the rainfall distribution curves of the Lag-routed hydrograph (LRH) method.

Figure 3: Schematic layout of the DFET

2.1.4 GIS-based maps

This group of five *click buttons* enable the user to view all the standard Geographical Information System (GIS)-based maps, inclusive of the *SAWS Reference Grid, R Value, SDF, Kovács* and *Veld-type* maps.

The **SDF CALIBRATION** button enables the user to have a glimpse at the procedures followed by Gericke (2010) to evaluate, calibrate en verify the original SDF method.

2.2 Catchment Information

The layout of the Catchment Information worksheet is displayed in Figure 4.

	A	B C	D	E	F	G
1	HOME PRINT	GENERAL	CATCHMENT INFO	RMATION	DESIGN T	ABLES
2	1. LOCATION		4. CATCHMENT CLAS	SIFICATION		
3 4	Secondary drainage region number Tertiary drainage region number	C5 C52	● INLAND/SUMMER RAINFALL		CATCHMENT: FLAT AND	PERMEABLE
5 6	Quaternary drainage region number Catchment description	C52A- G Krugersdrift Dam	COASTAL/WINTER RAINFALL		CATCHMENT: STEEP AND	IMPERMEABLE
7	2. AREA DISTRIBUTION FACTORS	6224	5. FLOW PATHS: NAT	URAL	Medder Diver	
8		0001	Quarland flow (L. Jure)		wodder River	
9	$\begin{array}{c} R \\ I \\ I \\ r \\ h \\ r \\ s \\ r \\ s \\ $	3 04	Overland flow: Height di	fference (H_m)		•
11	Lake areas $(\Upsilon, \%)$	0.34	Overland flow: Surface d	lescription	Average grass cover	
12			Distance to catchment co	entroid (L _c , km)	113.015	
13	Dolomite areas (D, %)		Longest main watercours	se (L _{cu} , km)	186.696	
14	Test: Area distribution total (%)	ок	Average main watercourse slope (S _{cu} , m/m)		0.00131	
15	3. DESIGN RAINFALL INFORMATIO	N	6. FLOW PATHS: ARTIFICIAL		○ YES	(€ NO
16		MAP (mm)	STREET F	LOW	CANAL F	LOW
17	Single Rain Ale Station	519	Flow path length (km)		Canal length (km)	
18	MULTIPLE RAINFALLL STATIONS	510	Slope (m/m)		Actual velocity (m/s)	
19	1' X 1' GRID RLMA&SI DESIGN RAINFALL		Manning's <i>n</i> value		Average grass cover on eroo	dable soil 💽
20			Actual velocity (m/s)		Max velocity (m/s)	
21		7. DESIGNE	R'S AND SUPERVISOR'	SDETAILS		
22	Designed	OJ Gericke		Checked JA du Plessis		
23	Date	June 15, 2009	Date		June 15, 2009	
24 25 27	DESIGN RAINFALL RATION	IAL METHOD	ALTERNATIVE RATIONAL N	IETHOD	EMPIRICAL ME	THODS
28 29 30	CHANNEL SLOPE SCS	METHOD	SYNTHETIC UNIT HYDROGRAPH	METHOD	PROBABILISTIC MET	HODS (AMS)
32 33 34	CATCHMENT SLOPE SDF	METHOD	LAG-ROUTED HYDROGRAPH	NETHOD	PROBABILISTIC MET	HODS (PDS)

Figure 4: Catchment Information worksheet

2.2.1 Pre-requisite input and linked worksheets

The *Design Rainfall* and *Channel slope* worksheets must be completed to provide the MAP, length and average slope of the main watercourse listed under *Catchment Information*; however, it is not a pre-requisite. The *Catchment Information* worksheet is linked to several other worksheets (*c.f.* Figure 4), since it serves as input to these worksheets.

2.2.2 Input ranges and comments

Input range identifier:

Single cell or cell range entries (light-green shaded and unprotected), option buttons and group boxes (drop-down lists with multiple options). Click and hold the mouse cursor in position to read any comment box (cells with red flags).

Location:

Cell B3:	Enter the secondary drainage region number consisting of a descriptive letter
	and numerical value, e.g. C5.
Cell B4:	Enter the tertiary drainage region number consisting of a descriptive letter and
	numerical values, e.g. C52.
Cell B5:	Enter the quaternary drainage region number consisting of descriptive letters
	and numerical values, e.g. C52A.
Cell B6:	Compulsory.
	Enter the catchment description/name, e.g. Krugersdrift Dam.

Area distribution factors:

Cell B8:	Compulsory.
	Enter the catchment area (km ²).
Cell B9:	Compulsory, if applicable.
	Indicate the %-rural areas in catchment.
Cell B10:	Compulsory, if applicable.
	Indicate the %-urban areas in catchment.
Cell B11:	Compulsory, if applicable.
	Indicate the %-lake areas in catchment.
Cell B12:	Compulsory, if applicable.
	Indicate the %-dolomite areas in catchment.

Design rainfall information:

Select the appropriate option button contained in the design rainfall group box by indicating either whether a single or multiple rainfall stations will be used. The MAP (mm) in *cell B17* will only be listed if the *Design Rainfall* worksheet is complete. The MAP and design rainfall depth estimations could be based on either the TR102 (Adamson, 1981) or RLMA-SAWS (Smithers and Schulze, 2000a; 2000b) design rainfall information.

Alternatively, the 1' x 1'Grid RLMA&SI design rainfall depths could be selected. These design rainfall depths are based on the output generated by the software program, *Design Rainfall Estimation in South Africa* as developed by Smithers and Schulze (2003). The MAP will then be listed in *cell B19*, but this is also reliant on the pre-requisite completion of the *Design Rainfall* worksheet.

Catchment classification:

Two group boxes, *e.g.* rainfall regions and catchment description must be completed. In the rainfall regions, select the appropriate option by indicating either whether the region can be classified as an "inland/summer rainfall" or a "coastal/winter rainfall" region. In catchment description, select the appropriate option by indicating either whether the catchment can be classified as "flat and permeable" or "steep and impermeable." The selections made here will have an influence on the return period adjustment factors (F_T) used in both the Rational method (RM) and alternative Rational method (ARM).

Flow paths: Natural:

Cell F8:	Compulsory.
	Enter the main watercourse/river name, e.g. Modder River.
Cell F9:	Compulsory, if applicable.
	Enter the distance of overland flow (km).
Cell F10:	Compulsory, if cell F9 was completed.
	Enter the height difference (m) along the overland flow path.
Cell F11:	Select the appropriate overland flow surface description from the group box
	(drop-down list, 14 options available).
Cell F12:	Compulsory, if the Synthetic unit hydrograph (SUH), LRH and empirical
	methods are to be used. Enter the distance to the catchment centroid (km),
	normally between 0.5 - 0.6 times the longest watercourse length.

Flow paths: Artificial:

Select the appropriate option button contained in the artificial flow path group box by indicating either "Yes" or "No." If "Yes" is selected, then complete *cell ranges E17:E19* and *G17:G18*, otherwise these cells can be left blank. The artificial flow path could consist of either street or canal flow or a combination thereof. The applicable cell ranges must be completed accordingly. The following applies:

- *Cell E17:* Enter the length of the street flow path (km), if applicable.
- *Cell E18:* Enter the slope of the street flow path (m/m), if *cell E17* was completed.
- *Cell E19:* Enter a Manning's *n* value, if *cell range E17:E18* was completed.
- *Cell G17:* Enter the canal flow path length (km), if applicable.
- *Cell G18:* Enter the design/actual velocity if different from the maximum velocity indicated in *cell G20*. Manning's or Chézy's equation for open-channel flow can be used.
- *Cell G19:* Select the appropriate canal lining material description from the group box (drop-down list, 16 options available) to establish the maximum allowable velocity in *cell G20*.

Designer's and supervisor's details:

Cell B22:	Enter the details of the person responsible for the design.
Cell B23:	Enter the design date (month, day, year), e.g. June 15, 2009.
Cell F22:	Enter the details of the person responsible for the supervision.
Cell F23:	Enter the approval date.

2.2.3 Calculation procedure

Area distribution factors:

Cell B14: Calculate the sum of *cell range B9:B11*. If # 100%, a "%-Error" message will appear. Revisit the input values.

Design rainfall information:

Cell B17:	Input from linked worksheet, Design Rainfall.
Cell B19:	Input from linked worksheet, Design Rainfall.

Flow paths: Natural:

- *Cell F13:* Input from linked worksheet, *Channel Slope*.
- Cell F14: Input from linked worksheet, Channel Slope.

Flow paths: Artificial:

- *Cell E20:* The actual velocity is based on Manning's equation (Equation 1) for street flow incorporating a cross-slope of 2%.
- *Cell G20:* Maximum allowable velocity based on the canal lining material selected from the drop-down list in *cell G19*.

$$v \qquad = \frac{1}{n} \left(\frac{0.1225}{3.57} \right)^{\frac{2}{3}} S^{\frac{1}{2}}$$

where:

v = actual velocity [m/s],

n =Manning's n value, and

S =longitudinal slope [m/m].

2.3 Design Rainfall

Two design rainfall databases are included in the DFET containing the design rainfall information based on the methodologies followed by Adamson (1981) and Smithers and Schulze (2000a; 2000b). These databases are collectively referred to as the TR102 (Adamson, 1981) and Regional Linear Moment Algorithm South African Weather Services *n*-day (RLMA-SAWS) (Smithers and Schulze, 2000a; 2000b) design point rainfall databases. The following pertaining these databases are of importance:

- **TR102:** The 1, 2, 3 and 7-day extreme design rainfall depths for return periods of 2, 5, 10, 20, 50, 100 and 200 years were estimated by Adamson (1981) using approximately 1 946 rainfall stations. A censored Log-Normal (LN) distribution based on the partial duration series (PDS) was used to estimate the design rainfall depths at a single site. Despite the fact that this database was last updated in 1981, it was still included in the DFET, since the recognised design rainfall estimation procedures used in both the ARM and Standard design flood (SDF) method require input from this particular database.
- **RLMA-SAWS:** Smithers and Schulze (2000b) conducted frequency analyses based on the General Extreme Value (GEV) probability distribution, at 1789 rainfall stations with at least 40 years of record, to estimate the 1-day design rainfall values in South Africa. This was followed by a regionalisation process (based on Linear Moment (LM) estimators) and establishment of 78 relatively homogeneous rainfall regions and associated index values derived from at-site data. Quantile growth curves, representative of the ratio between design rainfall depth and an index storm to return period, were developed for each of the homogeneous rainfall regions and at-site index values were then used to estimate design rainfall depths at 3 946 rainfall stations in South Africa.

(1)

2.3.1 Pre-requisite input and linked worksheets

The *Catchment Information* worksheet is pre-requisite input for this worksheet. The *Design Rainfall* worksheet is linked to the *Catchment Information* worksheet and also serves as the primary input for all the deterministic and empirical flood estimation methods.

2.3.2 Input ranges and comments

The following three options are available to estimate average/catchment rainfall:

- (a) RLMA-SAWS design rainfall depths based on either the arithmetic mean or Thiessen polygon methods.
- (b) TR102 design rainfall depths based on either the arithmetic mean or Thiessen polygon methods.
- (c) 1' x 1' Grid RLMA&SI design rainfall depths based on the output generated by the software program, *Design Rainfall Estimation in South Africa*.

Only one option can be selected at a time.

Input range identifier:

Single cell or cell range entries (light-green shaded and unprotected), option buttons and check boxes. In both these databases, the SAWS rainfall station numbers are used as the primary identifier. In other words, by entering the station numbers manually or by importing those from a database file in ArcGISTM, all the details (*e.g.* number, name, MAP, and design rainfall depths) become available. Click and hold the mouse cursor in position to read any comment box (cells with red flags).

RLMA-SAWS/TR102 design rainfall information:

The procedure to follow will depend on whether or not a user-defined MAP value is specified or whether or not the user want to use a selection of rainfall stations in the catchment under consideration. The user-defined MAP value (which is associated with the selection of the *'Single rainfall station*" option button contained in the *Catchment Information* worksheet) must be entered in *cell C41* if the first option is applicable. This MAP value overwrites any other estimated MAP value. Alternatively, *cell C41* could be left empty to ensure that the MAP will be based on the selected single rainfall station's design rainfall information.

The following procedure is relevant to the second option in cases where the user still has to identify the SAWS rainfall stations within/nearby the catchment boundary:

Click on the **SAWS REFERENCE GRID** button to view the SAWS rainfall station reference grid map (Figure 5) in order to establish in which grid the catchment under consideration is situated. The grid reference, *e.g.* 262, contains all the rainfall stations with numbering starting with 0262??? This 7-digit number will either be followed by an A, B, P, S or W, depending on which institution/company is responsible for the station.

Figure 5: SAWS reference grid map (SANRAL, 2006)

Click on the **DESIGN RAINFALL** button to return to the *Design Rainfall* worksheet.

Click on either the **RLMA-SAWS DATABASE TR102 DATABASE** to view the rainfall stations numbered in an ascending order and their associated design rainfall depths. The station numbers can be individually copied to the *Design Rainfall* worksheet (refer to

instructions below, *cell A71*) or a customised data file/sheet can be populated for later use. Alternatively, if the GIS-based information of the rainfall stations is available, the relevant database file (.dbf) can be accessed in MS-Excel, highlighted and copied to the *Design Rainfall* worksheet (refer to instructions below, *cell A71*).

Cell A71: Click and hold the mouse cursor in position. The following comment box with instructions will appear on screen:

CLICK ON THE RLMA-SAWS/TR102 DATABASE BUTTON TO ACCESS THE APPLICABLE	E DATABASE.
THE SAWS STATION NUMBERS OF UP TO 200 RAINFALL STATIONS WITHIN/NEARBY CAN BE ENTERED IN CELL RANGE A58: A157 & G58: G157, IF APPLICABLE.	THE CATCHMENT BOUNDARY
THE SAWS STATION NUMBER MUST BE A 7-DIGIT NUMBER FOLLOWED EITHER BY A	N A, B, P, S OR W.
THE CHECK BOXES "Outside catchment", CELL RANGE C58: C157 & G58: G157 M WHERE THE THIESSEN POLYGON METHOD IS BASED ON STATIONS OUTSIDE T THESE SELECTIONS WILL ALSO HAVE AN INFLUENCE ON THE ARITHMETIC MEAN N CONSIDERS ONLY THE STATIONS WITHIN THE CATCHMENT BOUNDARY.	UST BE SELECTED IN CASES HE CATCHMENT BOUNDARY. METHOD, SINCE THIS METHOD
ENTER THE THIESSEN POLYGON AREAS IN CELL RANGE D58: D157 & I58: I157, METHOD IS TO BE CONSIDERED.	IF THE THIESSEN POLYGON

Figure 6 is illustrative of the data entries based on the instructions listed in the abovementioned comment box. On completion of the above-listed instructions, the user can view the results from both the RLMA-SAWS and TR102 database.

	A B	С		D	E	F	G	Н	- I	J	
1	HOME	CATCHMENT INFORMATION	P	DESIGN RAIN		FALL PRINT 2 RLMA-S DATAB		RLMA-SA DATABA	AWS ASE	TR102 DATABASE	
2	Secondary drainage regio	n number		C5		Main wate	rcourse/river		Modder River		
3	Tertiary drainage region r	umber		C52		Designed			OJ Gericke		
4	Quaternary drainage regio	on number		C52A- G		Checked			JA du Plessis		
5	Catchment description			Krugersdrift Da	am	Date			June 15, 2009		
71		SE	LECT	ION OF D	AILY SAWS RAINFA	LL STAT	TIONS (RLIN	IA-SAWS	/TR102)		
72	Number	Station numbe	er 👘	Area (km²)	Station name	Number	Station n	umber	Area (km²)	Station name	
73	1	0232123W Outside o	atchment	118.728	ROODEPOORT	101	O	utside catchment			
74	2	0232181W Outside o	atchment	100.857	ROODEPOORT	102		utside catchment			
75	3	0232211W Outside o	atchment	40.136	NIEUWEJAARSFONTEIN	103		utside catchment			
76	4	0232275W Outside o	atchment	86.589	DEWETSDORP (Police)	104		utside catchment			
77	5	0232301W Outside o	atchment	74.032	KILDARE	105		utside catchment			
78	6	0232512W Outside o	atchment	98.538	THORLEY	106		utside catchment			
79	7	0261307W Outside o	atchment	20.406	BLOEMFONTEIN	107		utside catchment			
80	8	0261365W Outside o	atchment	60.038	BLOEMFONTEIN (BAYSWATER)	108	O	utside catchment			
81	9	0261366W Outside o	atchment	7.003	BLOEMFONTEIN (ARBORETUM)	109		utside catchment			
82	10	0261367W Outside o	atchment	6.978	BLOEMFONTEIN (ST. MICHAEL'S)	110		utside catchment			
83	11	0261368W Outside o	atchment	10.861	BLOEMFONTEIN (KING'S PARK)	111		utside catchment			
84	12	0261369W Outside o	atchment	39.344	BLOEMFONTEIN (HAMILTON)	112		utside catchment			
85	13	0261425W Outside o	atchment	45.539	BLOEMFONTEIN (WAVERLEY)	113		utside catchment			
86	14	0261426W Outside o	atchment	14.995	BLOEMFONTEIN (ESTIORE)	114		utside catchment			
87	15	0261516W Outside o	atchment	55.974	BLOEMFONTEIN (ESTIORE)	115	O	utside catchment			

Figure 6: Example of the SAWS daily rainfall station selection and entries

The averaged MAP, design rainfall depths associated with different return periods and number of thunder days per year are contained in *cell range A6:139* and illustrated in Figure 7.

	A B	С	D	E	F	G	Н		J				
1	НОМЕ	CATCHMENT INFORMATION	PRINT 1	DESIGN RAINF	ALL	PRINT 2	RLMA-S/ DATAB/	AWS ASE	TR102 DATABASE				
2	Secondary drainage regior	number	C5		Main wate	ercourse/river		Modder River					
3	Tertiary drainage region nu	imber	C52		Designed			OJ Gericke					
4	Quaternary drainage regio	n number	C52A- G		Checked			JA du Plessis					
5	Catchment description		Krugersdrift Da	Krugersdrift Dam Date June 15, 2009									
6	SAWS REF												
7				ARITHMETIC MEAN ME	THOD								
8	Average MAP (mm) 530.2 Average number of thunder days/year (R) 61.8												
9	9 Duration Design rainfall depth (P _T , mm) and associated return period (T, years)												
10	(days)	2	5	10	20	50	100		200				
11	1	48.7	65.8	77.9	90.0	106.5	119.5		133.1				
12	2	61.6	82.9	97.8	112.7	133.0	148.9		165.4				
13	3	68.6	92.0	108.0	123.9	145.2	161.7		178.5				
14	7	86.2	116.0	136.3	156.2	182.7	203.1		223.8				
15	THIESSEN POLYGON METHOD												
16	Averag	e MAP (mm)		518.5	/year (R)	62.3							
17	Duration		D	Design rainfall depth (P _T , mm) and associated return period (T, years)									
18	(days)	2	5	10	20	50	100		200				
19	1	48.5	65.5	77.5	89.6	106.0	119.0		132.5				
20	2	61.2	82.3	97.1	112.0	132.1	147.9		164.4				
21	3	68.0	91.2	107.2	122.9	144.0	160.4		177.1				
22	7	85.9	115.7	135.9	155.8	182.2	202.5		223.2				
23			TR102 DAIL	Y DESIGN RAINFAL	L INFO	RMATION							
24				ARITHMETIC MEAN ME	THOD								
25	Averag	e MAP (mm)		522.5	Aver	age number of	thunder days/	under days/year (R) 61.7					
26	Duration		D	esign rainfall depth (P _T , mm)	and assoc	iated return per	iod (T, years)						
27	(days)	2	5	10	20	50	100		200				
28	1	49.0	67.7	77.8	97.3	119.8	138.6		159.6				
29	2	61.1	84.9	102.7	121.8	149.7	172.8		198.0				
30	3	67.9	94.5	114.7	136.3	167.7	193.0		222.6				
31	7	85.2	121.4	148.6	175.2	218.9	253.3		287.4				
32				THIESSEN POLYGON M	ETHOD								
33	Averag	e MAP (mm)		511.2	Aver	age number of	thunder days/	'year (R)	62.1				
34	Duration		D	esign rainfall depth (P _T , mm)	and assoc	iated return per	riod (T, years)						
35	(days)	2	5	10	20	50	100		200				
36	1	48.7	67.2	(1.2	96.3	118.4	136.8		157.5				
37	2	60.6	84.1	101.7	120.3	147.6	1/0.3		195.0				
38	3	67.3	93.7	113.6	135.0	165.9	190.9		219.8				
- 39	(84.3	120.2	147.2	1/3.6	217.0	251.2	1	284.9				

Figure 7: Example of averaged MAP and design rainfall depths

Based on the results viewed and evaluated in the previous step, the appropriate option buttons contained in the design rainfall results group box (*cell range F68:J70*) must be selected by indicating either whether the RLMA-SAWS or TR102 database will be used and whether the results based on either the Thiessen polygon or Arithmetic mean method must be included. The design rainfall results group box is displayed in Figure 8.

	A B	С	D	E		F	G	Н	l.	J			
67	SELECTION OF FINAL DESIGN RAINFALL ESTIMATION RESULTS												
68	PREFERRED DAILY DES	GN RAINFALL DATABASE	1		RLMA-SAWS DATABASE			O TR 102	O TR 102 DATABASE				
69	PREFERRED AVERAGIN	G METHOD				() ARITHN	IETIC MEAN METH	OD	● THIES	SEN POLYGON METHOD			
70	USER-DEFINED AVERAG	E NUMBER OF THUNDER	DAYS/YEAR (R)	R VALUE MAP									

In cases where the estimated average number of thunder days per year is deemed as questionable, the user can enter a user-defined R value in *cell F70* with the use of the R value map (Figure 9). This value overwrites all estimated values.

Figure 9: Average number of thunder days per year (SANRAL, 2006)

1' x 1' Grid RLMA&SI design rainfall information:

The following guidelines and/or instructions assume that the output file generated by the software program, *Design Rainfall Estimation in South Africa* is ready for use in the DFET. In other words, the user-defined ASCII output file, which echoes the user selections and lists the design rainfall depths, is converted to a MS-Excel file, of which the averages of the grid-based rainfall estimates associated with durations in excess of the time of concentration, were calculated.

- *Cell D41:* Compulsory, if applicable. By entering this MAP value, all other estimated MAP values are overwritten if the '1'*1' *Grid RLMA&SI design rainfall*' option button contained in the *Catchment Information* worksheet was also selected.
- *Cell A43:* Click and hold the mouse cursor in position. The following comment box with instructions will appear on screen:

SEVEN (7) DESIGN RAINFALL DEPTHS ASSOCIATED WITH EACH RETURN PERIOD AND TWO (2) GROUPED USER-DEFINED STORM DURATIONS OF BETWEEN 0.083 hour (5 minutes) & 168 hours (7 days) CAN BE SELECTED BY ACTIVATING THE CHECK BOXES "10 min, 6 hr & 2 day, etc." IN CELL RANGE A44: B66. THE SELECTED STORM DURATIONS MUST FOLLOW ONE ANOTHER/ BE GROUPED WITHIN A CONTINUOUS TIME PERIOD. THE TIME OF CONCENTRATION MUST FOLLOW ONE ANOTHER/ BE GROUPED WITHIN A CONTINUOUS TIME PERIOD. THE TIME OF CONCENTRATION MUST BE WITHIN THE SELECTED TIME PERIOD. THE CORRESPONDING 24-hour DESIGN RAINFALL DEPTH VALUES MUST ALWAYS BE ENTERED/COPIED TO CELL RANGE C59: I59. SINCE THIS SERVES AS PRIMARY RAINFALL INPUT FOR THE SCS METHOD.

THE CORRESPONDING 1, 2, 3 AND 7 day DESIGN RAINFALL DEPTH VALUES MUST ALWAYS BE ENTERED/COPIED TO CELL RANGE C60: I62 & C66: I66, SINCE THIS SERVES AS PRIMARY RAINFALL INPUT FOR THE ALTERNATIVE RATIONAL METHOD.

IN ALL CASES, USE COPY & PASTE VALUES FOR MULTIPLE ENTRIES.

Cell range

C44:I66: Compulsory, if applicable.

The seven design rainfall depths associated with each return period and selected storm durations must be copied to the relevant cells.

Figure 10 displays the layout of the information screen representative of the 1' x 1'Grid RLMA&SI design rainfall entries.

- 4	A B	С	D	E	F	G	Н	- I	J	
1	HOME	CATCHMENT INFORMATION	DESIGN RAINF	ALL	PRINT 2	RLMA-S. DATAB	AWS ASE	TR102 DATABASE		
2	Secondary drainage regio	on number	C5		Main wate	ercourse/river		Modder River		
3	Tertiary drainage region r	number	C52		Designed			OJ Gericke		
4	Quaternary drainage regi	on number	C52A- G		Checked			JA du Plessis		
5	Catchment description		Krugersdrift Da	am	Date			June 15, 2009		
40		<u>1' x 1</u>	' GRID RL	GRID RLMA&SI DESIGN RAINFALL INFORMATION						
41	User-defined MAP (mm)	550.0	520.0	Grid MAP (mm)	SYNTH	HETIC UNIT HYD	DROGRAPH	LAG-RC	UTED HYDROGRAPH	
42	Duration		1' x 1' (Grid design rainfall depth (P _T	, mm) and	associated retu	irn period (T,	years)		
43	(minutes/hours)	2	5	10	20	50	100		200	
44	5 MINUTES									
45	10 MINUTES									
46	15 MINUTES									
47	30 MINUTES									
48	45 MINUTES									
49	1 HOUR									
50	1.5 HOURS									
51	2 HOURS									
52	4 HOURS									
53	6 HOURS									
54	8 HOURS									
55	10 HOURS									
56	12 HOURS	36.0	45.0	62.0	74.0	82.0	90.0		104.0	
57	16 HOURS	38.0	55.0	68.0	76.0	89.0	98.0		112.0	
58	20 HOURS	40.0	62.0	74.0	78.0	95.0	106.0		122.0	
59	S ≤24 HOURS	51.0	76.0	87.0	94.0	120.0	133.0		144.0	
60	Z ≥1 DAY	46.0	68.0	78.0	85.0	108.0	120.0		130.0	
61	✓ 2 DAYS	54.0	76.0	91.0	105.0	123.0	137.0		152.0	
62	3 DAYS	65.0	88.0	103.0	118.0	140.0	155.0		172.0	
63	4 DAYS	68.0	92.0	109.0	127.0	148.0	166.0		184.0	
64	5 DAYS	70.0	98.0	118.0	138.0	156.0	178.0		192.0	
65	6 DAYS	75.0	105.0	124.0	145.0	165.0	190.0		205.0	
66	7 DAYS	82.0	110.0	130.0	150.0	178.0	198.0		218.0	

Figure 10: Example of the 1' x 1' Grid RLMA&SI design rainfall entries

2.3.3 Calculation procedure

Arithmetic mean method:

$$\overline{X} = \sum \frac{X_i}{N_i} \tag{2}$$

Thiessen polygon method:

$$\overline{X} = \frac{\sum X_i A_i}{\sum A_i} \tag{3}$$

where:

 \overline{X} = averaged MAP [mm], averaged design point rainfall depth [mm] or average number of thunder days/year,

 $A = \operatorname{area} [\mathrm{km}^2],$

 N_i = number of rainfall stations within catchment area, and

 X_i = MAP [mm], design point rainfall depth [mm] or thunder days/year.

2.4 Average Catchment Slope

The Grid method (Equation 4; Alexander, 2001), Empirical method (Equation 5; Schulze *et al.*, 1992) and Neighbourhood method (ESRI, 2006) can be used in conjunction with standard tools available in the ArcGISTM environment. The latter method is only used as input to the DFET, since it is the standard ArcGISTM slope algorithm used to generate slope rasters from raw Digital Elevation Model (DEM) and/or point elevation GIS data sets to enable the determination of average catchment slopes and slope frequency distributions.

2.4.1 Pre-requisite input and linked worksheets

The *Catchment Information* worksheet is a pre-requisite input for this worksheet. The *Catchment Slope* worksheet is linked to all the worksheets containing the deterministic and empirical flood estimation methods.

2.4.2 Input ranges and comments

Input range identifier:

Single cell and cell range entries (light-green shaded and unprotected) and option buttons. Click and hold the mouse cursor in position to read any comment box (cells with red flags). The layout of the *Catchment Slope* worksheet is displayed in Figure 11.

	A	В	С	D	E	F	G	Н	I		
1	HOME PRINT	AVERA	GE CAT	CHMEN	T SLOP	E	CATCHI INFORM	ATION			
2	Secondary drainage region number	C5			Main water	course/river	Modder River				
3	Tertiary drainage region number	C52			Designed			OJ Gericke			
4	Quaternary drainage region number	C52A- G			Checked			JA du Plessi	s		
5	Catchment description	Krugersdrift I	Dam		Date			June 15, 200	9		
6	AVERAGE CATCHMENT SLOPE ESTIMATION METHODS										
7	Contour interval (∆H, m)		20		Map scale (1:X)		500	000		
8	Total length of contour lines in catchment (M, m)	1	10776515.778	3	Average slo	pe (DEM or	user input, m/m)	0.04	186		
9	Number of grid points (N)		2220		Average slo	pe (Grid me	thod, m/m)	0.02	919		
10	Sum of horizontal distances (m)		1520901.832 Average slope (Empirical method, m/m)				0.03404				
11	PREFERRED ESTIMATION METHOD	● DEM	DEM or USER INPUT O GRID METHOD OE						MPIRICAL METHOD		
12	SLOPE FREQUENCY	DISTRIBU	JTION CLA	ASSES (%) BASED (ON THE GI	RID METHOD				
13	0-3% Slope	40.6%				10-30% SI	17.	17.4%			
14	3-10% Slope	28.4%				> 30% Slo	13.6%				
15	HORIZONTAL DISTANCES BETWEEN CON	ISECUTIVE CONTOURS (Li)			Unit of measurement			○ MILLIMETRES			
16	L _i (1)	L _i (2)	L _i (3)	L _i (4)	L _i (5)	L _i (6)	L _i (7)	L _i (8)	L _i (9)		
17	455.528	1097.569	716.775	1354.745	495.303	1167.265	103.195	884.918	577.794		
18	710.563	832.916	817.544	716.269	1170.613	683.076	214.482	1123.665	398.061		
19	759.956	92.130	329.824	314.050	1133.771	362.170	272.185	976.753	818.630		
20	432.349	888.657	152.769	283.368	1348.716	176.315	463.034	1186.414	1275.530		
21	1021.848	365.607	121.937	2251.562	606.373	409.959	856.379	1558.020	608.861		
22	610.638	336.021	1245.117	1466.786	1398.645	737.146	1083.361	1458.320	727.940		
23	463.924	519.589	233.786	3376.404	625.470	809.243	338.645	1104.519	1467.619		
24	104.574	1226.638	53.150	2723.262	703.148	417.843	989.719	1032.078	271.831		
25	86.993	614.254	130.000	2153.730	142.459	727.931	809.438	1881.625	36.218		
26	145.849	1956.578	614.358	2100.528	94.406	401.781	979.958	420.372	116.965		
27	100.954	976.222	43.782	997.445	74.077	803.645	745.462	295.632	533.646		

Figure 11: Example of the *Catchment Slope* worksheet

DEM (user input)/Grid method/Empirical method:

<i>Cell B7:</i> Compulsory, applicable to both the Grid and Empirical methods.								
	Enter the contour interval in metres as obtained from GIS, orthophotos or							
	topographical maps, e.g. 20 m.							
Cell B8:	Compulsory, if the Empirical method is to be used.							
	Use $\operatorname{ArcGIS^{TM}}$ (Hawth's Analysis Tools) to estimate the total length of all							
	contour lines within a catchment (polygons).							
Cell H7:	Compulsory, if the Grid method is to be used.							
	Enter the map scale (1: X) as obtained from GIS, orthophotos or topographical							
	maps, e.g. 50 000.							
Cell H8:	Enter the average slope (m/m) as obtained from a DEM in ArcGIS TM .							
Cell B11:	Based on the values entered and results viewed in the previous steps, the							
	appropriate option button contained in the average slope group box							
	(cell range B11:I11) must be selected by indicating either whether the average							
	slope results based on the DEM (user input), Grid method (Alexander, 2001)							

or Empirical method (Schulze et al., 1992) must be used.

- *Cell A15:* <u>Comment:</u> "A total of 7 506 horizontal distances between consecutive contours can be entered in *cell range A17:1850*, if applicable. In all cases, use *Copy & Paste values* for multiple entries."
- *Cell E15:* <u>Comment:</u> "Indicate the unit in which the actual distances between consecutive contours on a map were measured, either in metres or millimetres."
- *Cell G15:* <u>Unit of measurement group box:</u> Select the appropriate option button by indicating either whether the unit of measurement was in "metres" or "millimetres".

Cell range

A17:I850: Refer to the comment made in *cell A15*.

2.4.3 Calculation procedure

Grid method (Alexander, 2001):

$$S_I = \frac{\Delta H}{\sum_{i=1}^N \frac{L_i}{N}}$$
(4)

Empirical method (Schulze et al., 1992):

$$S_2 \qquad = \frac{M\Delta H * 10^{-2}}{A} \tag{5}$$

where:

 S_{1-2} = average catchment slope [m/m], A = catchment area [km²], ΔH = contour interval [m],

$$L_i$$
 = horizontal distance between consecutive contours [m],

M = total length of all contour lines within the catchment [m], and

N = number of grid points.

Frequency distribution of grid points:

The results (based on Equation 4) contained in *cells B13, B14, H13 and H14* are representative of the slope frequency distribution of the grid points using the four standard slope classification classes applicable to the RM and ARM, *e.g.* 0 - 3%, 3 - 10%, 10 - 30% and > 30%.

2.5 Average Main Watercourse Slope

The 10-85 method (Equation 6; SANRAL, 2006), Taylor-Schwarz method (Equation 7; Van der Spuy and Rademeyer, 2010) and Equal-area method (Equation 8; Van der Spuy and Rademeyer, 2010), using either manual or GIS-based longitudinal profile information, are available options in the DFET.

2.5.1 Pre-requisite input and linked worksheets

The *Catchment Information* worksheet is a pre-requisite input for this worksheet. The *Channel Slope* worksheet is linked to the *Channel Plot* chart, the *Catchment Information* worksheet and all the worksheets containing the deterministic and empirical flood estimation methods.

2.5.2 Input ranges and comments

Input range identifier:

Single cell and cell range entries (light-green shaded and unprotected) and option buttons. Click and hold the mouse cursor in position to read any comment box (cells with red flags).

Longitudinal profile:

Cell B20: Click and hold the mouse cursor in position. The following comment box with instructions will appear on screen:

A TOTAL OF 150 HORIZONTAL DISTANCES AND REDUCED HEIGHTS REPRESENTATIVE OF THE LONGITUDINAL PROFILE CAN BE ENTERED IN CELL RANGE B22: C171. IN ALL CASES, USE COPY & PASTE VALUES FOR MULTIPLE ENTRIES. CLICK ON THE CHANNEL PLOT BUTTON TO ACCESS THE CHANNEL PROFILE CHART. THE X (HORIZONTAL DISTANCE) AND Y (REDUCED HEIGHT) SCALES OF THE CHANNEL PROFILE CHART MUST BE EDITED ACCORDING TO THE INFORMATION USED IN CELL RANGE B22: C171. RIGHT-CLICK ON THE RELEVANT SCALE BAR (X- OR Y- AXIS) AND SELECT FORMAT AXIS FOLLOWED BY AXIS OPTIONS. SET THE MAXIMUM AND MINIMUM VALUES, AS WELL AS THE MAJOR AND MINOR UNITS, IF REQUIRED. CLICK ON THE CHANNEL SLOPE BUTTON TO RETURN TO THE CHANNEL SLOPE WORKSHEET.

Average catchment slope results:

Cell C19: Based on the values entered and results viewed in the previous steps, the appropriate option button contained in the average slope group box (*cell range C19:J19*) must be selected by indicating either whether the 10-85, Taylor-Schwarz or Equal-area methods must be used.

2.5.3 Calculation procedure

10-85 method (SANRAL, 2006):

$$S_{CHI} = \frac{\left(H_{0.85L_{CH}} - H_{0.10L_{CH}}\right)}{\left(0.75L_{CH}\right)}$$
(6)

Taylor-Schwarz method (Van der Spuy and Rademeyer, 2010):

$$S_{CH2} = \left(\frac{L_{CH}}{\sum_{i=1}^{N} \frac{L_i}{\sqrt{S_i}}}\right)^2$$
(7)

Equal-area method (Van der Spuy and Rademeyer, 2010):

$$S_{CH3} = \frac{\left(H_T - H_B\right)}{L_{CH}} \tag{8}$$

where:

 S_{CH1-3} = average main watercourse slope [m/m],

$$A_i = \left(\frac{H_i + H_{i+1}}{2} - H_B\right) L_i \text{ [m^2]},$$
$$H_T = \frac{\left(\sum_{i=1}^N A_i * 2\right)}{L_{CH}} + H_B \text{ [m]},$$

 H_B = height at catchment outlet [m],

 H_i = specific contour interval height [m],

 $H_{0.85L}$ = height of main watercourse at length 0.85 L_{CH} [m],

 $H_{0.10L}$ = height of main watercourse at length $0.10L_{CH}$ [m],

$$L_{CH}$$
 = length of main watercourse [m],

 L_i = distance between two consecutive contours [m], and

 S_i = slope between two consecutive contours [m/m].

The layout of the *Channel Slope* worksheet is displayed in Figure 12, while a typical longitudinal profile plot example is shown in Figure 13.

	А	В		С	D	E	F	G	H	I	J		
1		HOME	AVI	ERAGE	MAIN W		RCOUR	SE SLOF	E	CHANNEI	PLOT		
2		Secondary drainage region number		C5	PI		Main wate	rcourse/river	N	Modder River			
3		Tertiary drainage region nu	mber	C52	-		Designed		O)J Gericke			
4		Quaternary drainage region	number	C52A- G			Checked		J	A du Plessis			
5		Catchment description		Krugersdrift Dam		Date		J	une 15, 2009				
6			AVERAGE	MAIN WATERCOURSE SLOPE ESTIMATION METHODS									
7					10-8	5 metho	od						
8		Horizontal distance	e (m)	ł	leight (m)		10-85 Hei	ght differenc	e (m)	Average s	lope (m/m)		
9	10%	18669.604			1243.596		ļ	183 /191		0.0	0131		
10	85%	158691.633			1427.087			103.431		0.0	0151		
11					Taylor-Sc	hwarz	method						
12		Horizontal distance	e (m)	ł	leight (m)		Height	t difference (r	n)	Average s	lope (m/m)		
13	Min	0.000			1229.850		Į	211.694		0.0	0113		
14	Max	186696.039 1441.544											
15			Equal-area method										
16		Horizontal distance	e (m)	ł	leight (m)		Height	t difference (r	n)	Average slope (m/m)			
17	Min	0.000			1229.850		190.149			0.00102			
18	Max	186696.039			1419.999								
19		PREFERRED ESTIMATION M	ETHOD	10-85 METHOD		○ TAYLOR-SCHWARZ METHOD		⊖ EQUAL-/	AREA METHOD				
20			LONGITUDI	NAL PRO	FILE INFO	RMATIC	ON OF MA	AIN WATER	COUR	SE			
21		Horizontal distance	es (m)	Reduc	ced heights	(m)	Progress	sive distances	; (m) 1	0%-Height (m)	85%-Height (m)		
22		0.000			1229.850			0.000					
23		40949.944			1260.000		40949.944			1243.596			
24		31106.001			1280.000			72055.945					
25		18655.357			1300.000		!	90711.302					
26		15979.525			1320.000		1	06690.827					
27		19896.583			1340.000		1	26587.410					
28		6516.592			1360.000		1	33104.002					
29		11644.911			1380.000		1	44748.913					
30		3218.920			1400.000		1	47967.833					
31		6919.501		1420.000			1	54887.334					
32		10736.110			1440.000		1	65623.444			1427.087		
33		7358.500			1460.000		1	72981.944					
34		5963.350			1480.000		1	78945.294					
35		3743.127			1500.000		1	82688.421					
36		3089.079			1520.000		1	85777.500					
		918.539			1530.000		1	86696.039					

Figure 12: Layout of the *Channel Slope* worksheet

Figure 13: Example of the main watercourse longitudinal profile plot

2.6 Rational Method (RM)

2.6.1 Pre-requisite input and linked worksheets

The *Catchment Information* and *Design Rainfall* worksheets are pre-requisite input for this worksheet. The *Rational Method* worksheet is also linked to the *Catchment Slope, Channel Slope* and *Design Tables* worksheets. The *Design Tables* worksheet contains all the input information and design parameters used in both the deterministic and empirical flood estimation methods. The latter worksheet can be accessed by clicking on the **DESIGN TABLES** button.

2.6.2 Input ranges and comments

Input range identifier:

Single cell and cell range entries (light-green shaded and unprotected) and option buttons. Click and hold the mouse cursor in position to read any comment box (cells with red flags).

Physical catchment characteristics:

Rural runoff coefficients (C1):

The average catchment slope, hydrological soil group/permeability and land use/vegetation classes are used to describe the physical characteristics of the rural catchment component of the RM.

The following applies:

Cell range

B19:B22:	Average catchment slope: Enter the %-distribution of the area associated with									
	the slope class description in cell range A19:A22, if applicable. Alternatively,									
	use the results contained in cells B13, B14, H13 and H14 of the									
	Catchment Slope worksheet, which are representative of the slope frequency									
	distribution of the grid points used in the Grid method. The sum of <i>cell range B19:B22</i> must be equal to 100% (<i>cell B23</i>).									
<u>Note:</u>	The sum of <i>cell range B19:B22</i> must be equal to 100% (<i>cell B23</i>).									
Cell range										
B25:B31:	Hydrological soil group/permeability: Enter the %-distribution of the area									
	<u>Hydrological soil group/permeability</u> : Enter the %-distribution of the area associated with the soil class description in <i>cell range A25:A31</i> , if applicable.									
<u>Note:</u>	The sum of <i>cell range B25:B31</i> must be equal to 100% (<i>cell B32</i>).									
Cell range										
B34:B39:	Land use/vegetation: Enter the %-distribution of the area associated with the									
	land use/vegetation description in <i>cell range A34:A39</i> , if applicable.									
<u>Note:</u>	The sum of <i>cell range B34:B39</i> must be equal to 100% (<i>cell B40</i>).									

Urban runoff coefficients (C₂):

Lawns, residential areas, industry and business are used to describe the physical characteristics of the urban catchment component of the RM. The following applies:

Cell range

G19:G22: <u>Lawns:</u> Enter the %-distribution of the area associated with the lawn description in *cell range E19:E22*, if applicable.

Cell range

G25:G26: <u>Residential areas</u>: Enter the %-distribution of the area associated with the residential area description in *cell range E25:E26*, if applicable.

Cell range G29:G31: Industry: Enter the %-distribution of the area associated with the industry description in *cell range E29:E31*, if applicable. *Cell range G34:G37:* Business: Enter the %-distribution of the area associated with the business description in *cell range E34:E37*, if applicable. *Note:* The sum of *cell ranges G19:G22; G25:G26; G29:G31* and *G34:G37* must be equal to 100% (*cell G41*).

Figure 14 displays the layout of the runoff coefficient information applicable to the RM.

	A	В	С	D	E F	G	Н		
1	HOME DESIGN	TABLES	RATI	ONAL M	ETHOD CA	DESIGN RAINFALL			
2	Secondary drainage region number	C5		PRINT	Main watercourse/river		Modder River		
3	Tertiary drainage region number	C52			Designed	OJ Gericke			
4	Quaternary drainage region number	C52A- G			Checked	JA du Plessis			
5	Catchment description	Krugersdrift D	am		Date	June 15, 2009			
17	RURAL RUNOFF C	OEFFICIEN	TS (C ₁)		URBAN R	UNOFF CO	EFFICIENTS (C ₂))	
18	Average catchment slope	%	Factor	Cs	Lawns	%	Factor	C ₂	
19	Vleis and pans (0-3%)	57.6	0.010	0.006	Sandy, flat (<2%)		0.100		
20	Flat areas (3-10%)	34.3	0.060	0.021	Sandy, steep (>7%)		0.200		
21	Hilly (10-30%) CATCHMENT	6.7	0.120	0.008	Heavy soil, flat (<2%)		0.170		
22	Steep areas (>30%) SLOPE	1.4	0.220	0.003	Heavy soil, steep (>7%)		0.350		
23	Total	100	Total	0.037	Total	0	Total	0.000	
24	Hydrological soil group/permeability	%	Factor	Cp	Residential areas	%	Factor	C ₂	
25	Very permeable (A)		0.030		Houses	59.12	0.500	0.296	
26	Very permeable (A/B)	23.15	0.040	0.009	Flats 0.14		0.700	0.001	
27	Permeable (B)	27.31	0.060	0.016	Total 59.26		Total	0.297	
28	Permeable (B/C)	2.82	0.080	0.002	Industry	%	Factor	C2	
29	Semi-permeable (C)		0.120		Light industry	11.53	0.800	0.092	
30	Semi-permeable (C/D)	15.69	0.160	0.025	Average industry		0.850		
31	Impermeable (D)	31.03	0.210	0.065	Heavy industry	0.03	0.900	0.000	
32	Total	100	Total	0.118	Total	11.56	Total	0.093	
33	Land use/vegetation	%	Factor	Cv	Business	%	Factor	C2	
34	Thick bush and plantations	4.34	0.030	0.001	City centre	4.63	0.950	0.044	
35	Light bush and farm lands	0.73	0.070	0.001	Suburban	24.55	0.700	0.172	
36	Grasslands	80.18	0.170	0.136	Streets		0.950		
37	Cultivated land, contoured		0.070	0.000	Maximum flood		1.000		
38	Cultivated land	14.29	0.170	0.024					
39	No vegetation	0.46	0.260	0.001					
40	Total	100	Total	0.164	Total	29.18	Total	0.216	
41	Total	100	Total C1	0.319	Total	100	Total C ₂	0.605	

Figure 14: Rural and urban runoff coefficients applicable to the RM

Time of concentration:

Cell range

D43:E43: Select the appropriate option button contained in the time of concentration group box by indicating either "Yes" or "No." If "Yes" is selected, the time of concentration in a defined main watercourse (Equation 10) will be adjusted by

a correction factor (τ). The correction factor is a function of the catchment area and was proposed by Kovács (unpublished; cited by Van der Spuy & Rademeyer, 2010). These correction factors as proposed by Kovács are listed in Table 1.

Area [A, km ²]	Correction factor [7]
< 1	2
1 - 100	2-0.5logA
100 - 5 000	1
5000 - 100 000	2.42-0.385logA
> 100 000	0.5

Table 1: Correction factors (τ) for T_C

Design notes:

Cell range

A47:A50: The user can enter any comments/design notes/recommendations in this cell range.

Design rainfall information:

Cell B64: Only applicable if the 1' x 1'Grid RLMA&SI design rainfall method was selected at the *Catchment Information* worksheet.
 <u>Comment:</u> "Enter a user-defined ARF or an ARF equal to the default ARF in *cell range B63:H63*. To exclude the use of an ARF, enter a value of 100 (recommended)."

2.6.3 Calculation procedure

Time of concentration (T_C) :

$$T_{C1} = 0.604 \left(\frac{rL_1}{\sqrt{\frac{H}{1000L_1}}} \right)^{0.467}$$
(9)

$$T_{C2} = \left(\frac{0.87L_2^2}{1000S_{CH}}\right)^{0.385}$$
(10)

$$T_{C3} = \left(\frac{L_3}{3.6\overline{v}}\right) \tag{11}$$

$$T_C = T_{C1} + T_{C2} + T_{C3}$$

where:

 T_{C1-3} = time of concentration [hours],

H = height difference along overland flow path [m],

 L_1 = hydraulic length of overland flow path [km],

$$L_2$$
 = length of longest watercourse [km],

- L_3 = length of artificial flow path [km],
- r = roughness coefficient for overland flow,

 S_{CH} = average main watercourse slope [m/m] as determined in Section 2.5, and

$$\overline{v}$$
 = average/design velocity [m/s].

Weighted runoff coefficients:

$$C_1 = C_s + C_p + C_v \tag{13}$$

$$C_{1D} = C_1 (1 - D_{\%}) + C_1 D_{\%} \left(\sum (D_{factor} C_{S\%}) \right)$$
(14)

$$C_{1T} = F_T C_{1D} \tag{15}$$

$$C_T = \alpha C_{1T} + \beta C_2 + \gamma C_3 \tag{16}$$

where:

 α = rural area distribution factor [%],

 β = urban area distribution factor [%],

 γ = lake area distribution factor [%],

 C_1 = rural runoff coefficient between zero and one,

 C_{1D} = rural runoff coefficient incorporating the effect of dolomite areas,

 C_{IT} = rural runoff coefficient incorporating the effect of initial saturation,

$$C_2$$
 = urban runoff coefficient between zero and one,

$$C_3$$
 = lake runoff coefficient,

$$C_p$$
 = runoff coefficient according to average soil permeability,

$$C_s$$
 = runoff coefficient according to average catchment slope,

$$C_T$$
 = weighted runoff coefficient for *T*-year return period,

$$C_v$$
 = runoff coefficient according to average land use/vegetation, and

 F_T = adjustment factor.

Design rainfall information:

The following depth-duration-frequency (DDF) relationships of averaged design rainfall information associated with the T_C are possible options in the RM:

- (a) Midgley and Pitman (M&P) DDF relationship based on Log-Extreme Value Type 1 (LEV1) distributions (Midgley and Pitman, 1978); and
- (b) DDF relationship based on the RLMA&SI approach.

Design point rainfall (PT M&P):

$$P_T = (I_{W,S})(T_C)(M_F)(F)$$
(17)

$$I_W = \frac{122.8}{\left(1 + 4.779T_C\right)^{0.7372}}$$
(18)

$$I_S = \frac{217.8}{\left(1 + 4.164T_C\right)^{0.8832}} \tag{19}$$

$$M_F = \frac{(18.79 + 0.17MAP)}{100} \tag{20}$$

Design point rainfall (PT RLMA&SI):

These design point rainfall values are based on the 1' x 1' Grid RLMA&SI design rainfall depths from the linked worksheet, *Design Rainfall*.

General:

$$I_T = \frac{P_T}{T_C}$$
(21)

$$ARF = (90000 - 12\ 800\ln A + 9\ 830\ln(60T_c))^{0.4}$$
(22)

$$I_{TAvg} = I_T \left(\frac{ARF}{100}\right) \tag{23}$$

Peak flow:

$$Q_T = \frac{C_T I_{TAvg} A}{3.6} \tag{24}$$

where:

A = catchment area [km²], ARF = areal reduction factor [%],F = frequency factor,

- I_S = rainfall intensity in summer/inland regions [mm/h],
- I_T = design point rainfall intensity [mm/h],
- I_{TAvg} = average design rainfall intensity [mm/h],
- I_W = rainfall intensity in winter/coastal regions [mm/h],
- *MAP* = mean annual precipitation [mm],
- M_F = MAP factor,
- P_T = design point rainfall depth [mm],
- Q_T = peak flow for *T*-year return period [m³/s], and
- T_C = time of concentration [hours].

Figure 15 displays the layout of the input screen associated with the time of concentration and the design notes, while the estimation results of the time of concentration, weighted runoff coefficients, design rainfall information and peak flows are also shown.

	A	В	С	D	E	F	G	Н	l.		
1	HOME DESIGN	TABLES	RAT	IONAL M	ETHOD	CA INFO	TCHMENT DRMATION	DESIGN RAI	NFALL		
2	Secondary drainage region number	C5		PRINT	Main waterc	ourse/river		Modder River			
3	Tertiary drainage region number	C52			Designed			OJ Gericke			
4	Quaternary drainage region number	C52A- G			Checked			JA du Plessis			
5	Catchment description	Krugersdrift D)am		Date	June 15, 2009					
42	TIME OF CC	NCENTRA	TION (T _c)			т		CENTRATION (T _c)		
43	Correction factor (τ) for defined main w	atercourse	0.956	○ YES	(€ NO						
44	Overland flow (T _{C1})		Defined I	main waterco	ourse (T _{C2})	Artificial	flow (T _{C3})	Total T	с		
45	0.000	hours	47.	.894	hours	0.000	hours	47.9	hours		
46				DESIGN NO	TES						
47											
48											
49											
50											
51		١	NEIGHTED	RUNOFF (COEFFICIE	NTS					
52	Return period (T, years)	2	5	10	20	50	100	200			
53	Rural runoff coefficient (C1)	0.319	0.319	0.319	0.319	0.319	0.319	0.319			
54	Dolomitic rural runoff coefficient (C _{1D})	0.319	0.319	0.319	0.319	0.319	0.319	0.319			
55	Adjustment factor (F⊤)	0.500	0.550	0.600	0.670	0.830	1.000	1.200			
56	Adjusted rural runoff coefficient (C _{1T})	0.160	0.176	0.192	0.214	0.265	0.319	0.383			
57	Weighted runoff coefficient (C _T)	0.173	0.188	0.203	0.225	0.274	0.327	0.389			
58			DESIGN R	AINFALL I	NFORMATI	ON					
59	Return period (T, years)	2	5	10	20	50	100	200			
60	Design point rainfall (P _{T M&P} , mm)	48.578	66.149	83.719	103.357	134.365	165.372	186.043	3		
61	Design point rainfall (P _{T RLMA&SI} , mm)										
62	Design point rainfall intensity (I _T , mm/h)	1.014	1.381	1.748	2.158	2.805	3.453	3.884			
63	Areal reduction factor (ARF, %)	79.435	79.435	79.435	79.435	79.435	79.435	79.435			
64	Areal reduction factor (ARF _{RLMA&SI})		ļ								
65	Average design rainfall intensity (I _{T Avg} , mm/h)	0.806	1.097	1.389	1.714	2.229	2.743	3.086			
66	Peak flow (Qr. m ³ /s)	245	363	497	678	1075	1576	2108			

Figure 15: Design information and estimation results

2.7 Alternative Rational Method (ARM)

2.7.1 Pre-requisite input and linked worksheets

The *Catchment Information*, *Design Rainfall* and *Rational Method* worksheets are prerequisite input for this worksheet. The *Alternative Rational Method* worksheet is also linked to the *Catchment Slope*, *Channel Slope* and *Design Tables* worksheets.

2.7.2 Input ranges and comments

Input range identifier:

Single cell and cell range entries (light-green shaded and unprotected) and option buttons.

Time of concentration:

Cell range

D53:E53: Select the appropriate option button contained in the time of concentration group box by indicating either "Yes" or "No." If "Yes" is selected, the time of concentration in a defined main watercourse will be adjusted by a correction factor (τ , Table 1).

Design notes:

Cell range

A57:A60: The user can enter any comments/design notes/recommendations in this cell range.

2.7.3 Calculation procedure

Time of concentration (T_C) :

Refer to Section 2.6.3.

Weighted runoff coefficients:

Refer to Section 2.6.3.

Design rainfall information:

The following DDF relationships of averaged design rainfall information associated with the T_C are possible options in the ARM:

- (a) Hershfield DDF relationship based on the modified Hershfield equation (Equation 25, $T_C \le 6$ hours) (Alexander, 2001) and/or TR102/RLMA-SAWS *n*-day design rainfall information; and
- (b) DDF relationship based on the RLMA&SI approach.

Design point rainfall (PT Hershfield, Tc ≤ 6-h):

$$P_T = 1.13(0.41 + 0.64\ln T)(-0.11 + 0.27\ln(60T_C))(0.79M^{0.69}R^{0.20})$$
(25)

where:

- P_T = design point rainfall depth [mm], M = 2-year mean of the annual daily maxima rainfall [mm], R = average number of days per year on which thunder was heard, T = return period [years], and T_C = time of concentration [hours].

Design point rainfall (P_T TR102/RLMA-SAWS, 6-h < Tc \leq 168-h):

If the time of concentration (T_C) is longer than 6 hours and less than 24 hours, then linear interpolation between Equation 25 and the 1-day design point rainfall depth from either the TR102 or RLMA-SAWS database is used. If the T_C exceeds 24 hours, then linear interpolation between the *n*-day design point rainfall values is applicable.

Design point rainfall (PT RLMA&SI):

These design point rainfall values are based on the 1' x 1' Grid RLMA&SI design rainfall depths from the linked worksheet, *Design Rainfall*.

General:

Refer to Section 2.6.3.

Peak flow:

Refer to Section 2.6.3.

An example of the RLMA-SAWS/TR102 *n*-day design rainfall information and the physical catchment characteristics is shown in Figure 16.

	Α	В	С	D	E	F	G	Н		
1	HOME DESIGN TABLES	ALTE	RNATIVE	E RATIO	NAL M	ETHOD	CATCHN	MENT ATION DESIGN RAINFALL		
2	Secondary drainage region number	C5		PRINT	Main wat	ercourse/river		Modder River		
3	Tertiary drainage region number	C52			Designed	l		OJ Gericke		
4	Quaternary drainage region number	C52A- G			Checked			JA du Plessis		
5	Catchment description	Krugersdrift D	am		Date			June 15, 2009		
6	RLM	MA-SAWS/TR102 N-DAY DESIGN R				L INFORMA	TION			
7	SAWS rainfall station number	Multiple station	ins		Number (of thunder day	s/year (R)	62		
8	SAWS rainfall station name	Multiple statio	n numbers		2-year 1-	day mean ann	ual maxima (M, mm)	48		
9	Rainfall region	Inland/summe	P		MAP (mm	ו)	518			
10	Duration (days)	Design rainfall d				mm) and asso	ciated return period	l (T, years)		
11	Duration (duys)	2	5	10	20 50 100			200		
12	1	48	66	78	90	106	119	133		
13	2	61	82	97	112	132	148	164		
14	3	68	91	107	123	144	160	177		
15	7	86	116	136	156	182	203	223		
16		PHYSIC	CAL CATCH	HMENTCH	ARACTE	RISTICS				
17		M					AREA DISTRIBUTION	FACTORS		
18	HATOMAETEO				Rural area	is (a)		96.62	%	
19	Size of catchment (A)	6331	.000	km²	Urban are	as (β)		3.04	%	
20	Overland flow distance (L _O)			km	Lakes (T)			0.34	%	
21	Overland flow height difference (H)			m	Dolomite area (D)			0	%	
22	Average overland slope (S _O)			m/m	ARTIFICIAL F			ow		
23	Overland flow surface (r value)				Street flow			Canal fl	ow	
24	Longest main watercourse (L _{CH})	186	.696	km	Flow path length (km)			Canal length (km)		
25	Average channel slope (Seu) CHANNEL	0.00	1131	m/m	Slope (m/m)			Actual velocity (m/s)		
26	Average channel slope (SCH) SLOPE	0.00131		11/11	Actual velocity (m/s)			Max velocity (m/s)		

Figure 16: Design rainfall and physical catchment information (ARM)

Figure 17 displays the estimated design rainfall depths and peak flows associated with the T_C .

	A	В	С	D	E	F	G	H I				
1	HOME DESIGN TABLES	ALTE	RNATIVE		NAL MI	ETHOD	CATCHI INFORM	MENT DESIGN RAINFALL				
2	Secondary drainage region number	C5		PRINT	Main wat	ercourse/river	Modder River					
3	Tertiary drainage region number	C52			Designed			OJ Gericke				
4	Quaternary drainage region number	C52A- G				JA du Plessis						
5	Catchment description	Krugersdrift D	am	June 15, 2009								
68		D	DESIGN RAINFALL INFORMATION									
69	Return period (T, years)	2	5	10	20	50	100	200				
70	Design point rainfall (P _{T Hershfield, To ≤ 6-h} , mm)	37.478	63.225	82.702	102.179	127.926	147.403	166.880				
71	Design point rainfall (P _{T TR102/RLMA-SAWS, 6-h < To ≤ 168-h} , mm)	61.117	82.271	97.040	111.912	132.030	147.802	164.222				
72	Design point rainfall (P _{T RLMA&SI} , mm)											
73	Design point rainfall intensity (I _T , mm/h)	1.276	1.718	2.026	2.337	2.757	3.086	3.484				
74	Areal reduction factor (ARF, %)	79.435	79.435	79.435	79.435	79.435	79.435	79.435				
75	Areal reduction factor (ARF RLMA&SI)											
76	Average design rainfall intensity (I _{T Avg} , mm/h)	1.014	1.365	1.609	1.856	2.190	2.451	2.768				
77	Peak flow (Q _T , m³/s)	308	451	576	735	1057	1409	1891				

Figure 17: Design rainfall information and associated peak flows

2.8 Soil Conservation Services (SCS) Method

2.8.1 Pre-requisite input and linked worksheets

The *Catchment Information*, *Design Rainfall* and *Rational Method* worksheets are prerequisite input for this worksheet. The *SCS Method* worksheet is also linked to the *Catchment Slope* and *Channel Slope* worksheets.

2.8.2 Input ranges and comments

Input range identifier:

Single cell and cell range entries (light-green shaded and unprotected) and option buttons. Click and hold the mouse cursor in position to read any comment box (cells with red flags).

Runoff volume:

Initial weighted CN: Land use and hydrological soil groups:

Cell range

- *D26:J71:* Select the appropriate option button contained in the CN hydrological soil group box next to the identified/appropriate land-use description by indicating either "A, A/B, B, B/C, C, C/D or D."
- *Cell K23:* <u>Comment:</u> "Enter the area (%) associated with the selected hydrological soil groups (*cell range D26:J71*), if applicable."

Cell range

- *P26:V71:* Select the appropriate option button contained in the CN hydrological soil group box next to the identified/appropriate land-use description by indicating either "A, A/B, B, B/C, C, C/D or D."
- *Cell W23:* <u>Comment:</u> "Enter the area (%) associated with the selected hydrological soil groups (*cell range P26:V71*), if applicable."

Figure 18 is an illustrative example of the option button-based table used in the DFET to establish the initial weighted CN values for selected land use and hydrological soil groups.

	A	B C	DEFGHIJK L
22	INITIAL WEIGHTED CURVE NUM	BER (CN, LAND USE	AND HYDROLOGICAL SOIL GROUPS)
23 24	Description	Runoff potential	Hydrological soil group Area (%) Weigh CN va
25	Generalised CN numbers		A A/B B B/C C C/D D 100 75.14
26	Agriculture		
27	Open space		0000000078.2 59.43
28	Forest		
29	Disturbed land		000000000000
30	Residential		
31	Paved		0.88.
32	Commercial/Industrial		0000000000000
33	Garden crops		A A/B B B/C C C/D D 0 0
34	Straight row	High	
35	Straight row	Low	
36	Small grain		A A/B B B/C C C/D D 0 0
37	Straight row	High	
38	Straight row	Low	
39	Straight row and conservation tillage	High	
40	Straight row and conservation tillage	Low	
41	Planted on contour	High	
42	Planted on contour	Low	
43	Planted on contour and conservation tillage	High	
44	Planted on contour and conservation tillage	Low	
45	Planted on contour: Winter	Low	
46	Conservation structures	High	
47	Conservation structures	Low	
48	Conservation structures and tillage	High	
49	Conservation structures and tillage	Low	

Figure 18: Initial weighted CN values

Lag time (T_L) :

Cell Q18: Based on the values entered and results viewed in the previous steps, the appropriate option button contained in the lag time group box (cell range Q18:X18) must be selected by indicating either whether the T_C/T_L lag, SCS lag or SCS-SA lag methods must be used to estimate the lag time.

2.8.3 Calculation procedure

Runoff volume:

$$CN = \frac{25400}{(S+254)} \tag{26}$$

$$S = \frac{25\,400}{CN} - 254\tag{27}$$

$$I_A = cS \tag{28}$$

$$Q_V = \frac{\left(P - I_A\right)^2}{P - I_A + S} \tag{29}$$

where:

С	= seasonal	soil	moisture	status	coefficient,	

- *CN* = Curve Number,
- I_A = initial losses/abstractions, normally 0.1S [mm],
- P = 24-hour design rainfall depth for *T*-year return period [mm],
- Q_V = stormflow depth [mm], and
- *S* = potential maximum soil water retention [mm].

Note:

The total area distribution of CN (*cell range B17:L17*) must be equal to 100%. The following comment(s) will appear on screen if this cell range is accessed by clicking and holding the mouse cursor in position: "If the %-area distribution of CN (*cell range B17:L17*) equals "%-Error," check the sum-total of *cells K72* + *W72* (%-area), since it must be equal to 100%."

Warning:

The initial CN values are not adjusted for any variations in the soil moisture status of the catchment.

Lag time (T_L) :

$$T_{Ll} = 0.6T_C \tag{30}$$

$$T_{L2} = \frac{L^{0.8} (S + 25.4)^{0.7}}{7069 S_{Avg}^{0.5}}$$
(31)

$$T_{L3} = \frac{A^{0.35} M A P^{1.1}}{41.67 S_{Avg}^{0.3} \overline{I_{30}}^{0.87}}$$
(32)

where:

A = catchment area [km²],

 $\overline{I_{30}}$ = 2-year return period 30-minute rainfall intensity [mm/h],

L = hydraulic length of catchment [m],

MAP = mean annual precipitation [mm],

S = potential maximum soil water retention [mm],

 S_{Avg} = average catchment slope [%],

 T_{Ll} = lag time based on the T_C/T_L relationship [hours],

 T_{L2} = lag time based on the SCS lag equation [hours],

 T_{L3} = lag time based on the SCS-SA lag equation [hours], and

 T_C = time of concentration [hours].

Peak flow:

$$Q_T = \frac{0.2083AQ_v}{\frac{T_c}{2} + T_L}$$
(33)

where:

A = catchment area [km²], $Q_T = \text{peak flow for } T\text{-year return period [m³/s]},$ $Q_V = \text{stormflow depth [mm]},$ $T_C = \text{time of concentration [hours], and}$ $T_L = \text{lag time based on either Equations 30, 31 or 32 [hours]}.$

The layout of the *SCS Method* worksheet, with specific reference to the procedural steps followed to estimate the peak flow, is shown in Figures 19 and 20, respectively.

	A	В	C D	E F	G H	I J	K	L		
2	GENEI	RAL CATCHME	INT INFOR	MATION						
3	Secondary drainage region number	C5	PRINT	Main wat	ercourse/	river	Modder Ri	ver		
4	Tertiary drainage region number	C52		Designed			OJ Gerick	е		
5	Quaternary drainage region number	C52A- G		Checked			JA du Plessis			
6	Catchment description	Krugersdrift Dam		Date			June 15, 2	009		
7	RLMA-SAWS/TR10	2 24-hour DES	GIGN RAINF	FALL INF	ORMAT	ION				
8	SAWS rainfall station number	Multiple station nu	mbers	Thunder	days/year		62			
9	SAWs rainfall station name	Multiple stations		2-year 1-0	lay maxir		48			
10	Rainfall region	Inland/summer		MAP (mm	1)		518			
11	Return period (T, years)	2	5	10	20	50	100	200		
12	RLMA-SAWS/TR102 design rainfall depth (mm)	48	66	78	90	106	119	133		
13	1' x 1' Grid RLMA&SI design rainfall depth (mm)									
14		RUNOFF V	OLUME							
15	Return period (T, years)	2	5	10	20	50	100	200		
16	Weighted Curve Number (CN)	75.146	75.146	75.146	75.146	75.146	75.146	75.146		
17	Total area distribution of CN (%)	100.000	100.000	100.000	100.000	100.000	100.000	100.000		
18	Potential maximum soil water retention (S, mm)	84.009	84.009	84.009	84.009	84.009	84.009	84.009		
19	Initial losses/abstractions (la, mm)	8.401	8.401	8.401	8.401	8.401	8.401	8.401		
20	Stormflow depth (Q _v , mm)	12.936	23.121	31.197	39.880	52.477	62.855	74.040		
21	WARNING: The initial Curve Number (CN) value	WARNING: The initial Curve Number (CN) values are not adjusted for any variations in the soil moisture status of the catchment								

Figure 19: General catchment, design rainfall and runoff volume information

	М		Ν	0	Ρ	Q R	S T	UV	W	Х
2		PHYS	ICAL CATCHM	ENT C	HAF	RACTER	RISTICS			
3	NA	TURAL FLOW						ARTIFICI	AL FLOW	
4	Size of catchment (A)		6331.000		km²			Stree	t flow	
5	Overland flow distance (L _O)		0.000		km	Flow path	length		0.000	km
6	Average overland slope (S _O)				m/m	Slope				m/m
7	Overland flow surface (r value)	Overland flow surface (r value) CHANNEL					Actual velocity			m/s
8	Longest main watercourse (L _{CH})	km	Canal flow							
9	Average channel slope (S _{CH})	CATCHMENT	0.00131		m/m	n Canal length 0.000			km	
10	Average catchment slope (S)	SLOPE	0.04186		m/m	Actual vel	ocity			m/s
11			TIME OF CON	ICENT	RAT	TION (T _C)			
12	Overland flow (T _{C1} , hours)		0.000			Defined m	47.894			
13	Artificial flow (T _{C3} , hours)		0.000			Total time of concentration (T _c ,hours)				47.9
14			LAG	TIME (T _L)					
15	T _C .T _L relationship (T _{L1})							28.737		hours
16	SCS lag time (TL2)							30.478		hours
17	SCS-SA lag time (T_{L3}) (Schmidt a	and Schulze,	1984; 1987)					21.749		hours
18	8 PREFERRED METHOD FOR LAG TIME (TL) ESTIMATION					Отс/т	'L LAG	⊙ scs i	.AG 🔿 SC	S-SA LAG
19	19 PEAK FLC					-)				
20	Return period (T, years)		2	5		10	20	50	100	200
21	Peak flow (Q _T , m ³ /s)	560		756	966	1272	1523	1794		

Figure 20: Physical catchment characteristics, T_C , T_L and peak flow estimation

2.9 Standard Design Flood (SDF) Method

2.9.1 Pre-requisite input and linked worksheets

The *Catchment Information* and *Design Rainfall* worksheets are pre-requisite input for this worksheet. The *SDF Method* worksheet is also linked to the *Catchment Slope*, *Channel Slope*, *Design Tables* and *SDF TR102 Rainfall* worksheets, as well as the *SDF Map*. The latter worksheet and map can be accessed by clicking on the **SDF TR102 RAINFALL** and **SDF MAP** buttons, respectively.

2.9.2 Input ranges and comments

Input range identifier:

Single cell and cell range entries (light-green shaded and unprotected) and option buttons. Click and hold the mouse cursor in position to read any comment box (cells with red flags).

TR102 *n*-day design rainfall information:

Cell B7:Comment: "Enter the SDF basin number, between 1 and 29. Click on the SDFMap button to view the SDF regional map of South Africa."

Cell range

- D24:E24: Select the appropriate option button contained in the time of concentration group box by indicating either "Yes" or "No." If "Yes" is selected, the time of concentration in a defined main watercourse will be adjusted by a correction factor (τ , Table 1).
- *Cell A38:* Click and hold the mouse cursor in position. The following comment box with instructions will appear on screen:

CLICK ON THE TABLE 8 BUTTON TO VIEW THE "DESIGN TABLES WORKSHEET".

THE (a) & (b) CONSTANTS ARE LISTED IN TABLE 8: SDF ADJUSTMENT FACTORS (F) (Van Bladeren, 2005).

ENTER THE (a) CONSTANTS OF THE SDF ADJUSTMENT FACTORS (F) APPLICABLE TO THE SELECTED SDF BASIN IN CELL RANGE B38: H38 (2- 200 years).

IF NO (a) & (b) CONSTANTS ARE DEFINED, ENTER THE SDF ADJUSTMENT FACTORS (F) IN CELL RANGE B38: H38. LEAVE CELL RANGE B38: H38 EMPTY, IF NO ADJUSTMENTS ARE REQUIRED.

Cell A39: Click and hold the mouse cursor in position. The following comment box with instructions will appear on screen:

CLICK ON THE TABLE 8 BUTTON TO VIEW THE "DESIGN TABLES WORKSHEET".

THE (a) & (b) CONSTANTS ARE LISTED IN TABLE 8: SDF ADJUSTMENT FACTORS (F) (Van Bladeren, 2005).

ENTER THE (b) CONSTANTS OF THE SDF ADJUSTMENT FACTORS (F) APPLICABLE TO THE SELECTED SDF BASIN IN CELL RANGE B39: H39 (2- 200 years).

IF NO (a) & (b) CONSTANTS ARE DEFINED, ENTER A VALUE OF ONE (1) IN CELL RANGE B39: H39.

LEAVE CELL RANGE B38: H38 EMPTY, IF NO ADJUSTMENTS ARE REQUIRED.

Design notes:

Cell range

A44:A51: The user can enter any comments/design notes/recommendations in this cell range.

2.9.3 Calculation procedure

Time of concentration (T_C) :

Refer to Section 2.7.3.

Design rainfall information:

Refer to Section 2.7.3.

Regionalised runoff coefficients:

$$C_T = \frac{C_2}{100} + \left(\frac{Y_T}{2.33}\right) \left(\frac{C_{100}}{100} - \frac{C_2}{100}\right)$$
(34)

Peak flow:

 $Q_T = 0.278 C_T I_{TAvg} A \tag{35}$

$$Q_{SDF} = \frac{Q_T}{F}$$
(36)

where:

A = catchment area [km²],

 C_2 = calibrated runoff coefficient for the 2-year return period,

 C_{100} = calibrated runoff coefficient for the 100-year return period,

 C_T = regionalised runoff coefficient,

- F = adjustment factor (Van Bladeren, 2005),
- I_{TAvg} = average design rainfall intensity [mm/h],
- Q_{SDF} = adjusted peak flow for *T*-year return period [m³/s],
- Q_T = original peak flow for *T*-year return period [m³/s], and
- Y_T = return period factor.

The layout of the *SDF Method* worksheet is shown in Figure 21, while the location of the SDF basins is shown in Figure 22.

	A			В	С	D	E	F	G	Н	1	
1	HOME	DESIGN	TABLES	S	TANDAR	D DESIG	N FLOO	D METH	OD	CATCHMEN	IT SDF TR ON RAINFA	102 ALL
2	Secondary drainage r	region num	ber		C5		PRINT	Main waterc	ourse/river		Modder River	
3	Tertiary drainage regi	ion number	r		C52			Designed			OJ Gericke	
4	Quaternary drainage	region nur	nber		C52A- G			Checked			JA du Plessis	
5	Catchment description	n			Krugersdrift D	am		Date			June 15, 2009	_
6				TF	R102 N-DAY	DESIGN F	RAINFALLI	NFORMATI	ON			
7	SDF Basin number		SDF MAP			9		MAP (mm)			376	
8	SAWS rainfall station	number				0258458W		Number of th	under days/	/ear (R)	47	
9	SAWS rainfall station	name			Ja	cobsdal (Polic	ce)	2-year 1-day	maxima (M,	mm)	43	
10	Du	ration (day	s)			Design	rainfall dept	h (P _T , mm) an	d associated	return period	(T, years)	
11	1 1				2	5	10	20	50	100	200	
12		1			43	51	/5	91	114	135	155	
13		2			54	/0 97	30	134	151	203	210	
14		7			55 70	10/	105	154	203	203	230	
10				T.				CTEDISTIC	205	240	200	
16	NATURAL FL							.o				
1/	Size of established (A)		NATUR	AL FLOV	(V 6221	000	lem2	ARTIFICIAL FL			_OW Capal flow	
10	Size of catchment (A)				0331	.000	km	Street flow			Canal length (km)	
20	Overland flow distance (L _O)						m/m	Slope (m/m)	gui (Kili)		Actual velocity (m/s)	
21	Longest main watercour	(00) rse (Lou)	CHANNEL		186	696	km				riotaan toloonty (inito)	
22	Average channel slope ((Seu)	SLOPE		0.00)131	m/m	Actual velocit	y (m/s)		Max velocity (m/s)	
22	r dolugo onanior ciopo ((OCH)	TIME OF (NTRATION	(T _c)						
23	Correction fac	ctor (⁊) for o	lefined main	waterco	ourse	0.956	OYES	(€ NO	TIM	ENTRATION (T	c)	
25		Overland	flow (T _{C1})			Defined I	nain waterco	ourse (T _{C2})	Artificial	flow (T _{C3})	Total To	
26		0.000	(hours	47.	894	hours	0.000	hours	47.9	hours
27					DESIG	SN RAINFA	LL INFORM	ATION				
28	Return period (T. vear	rs)			2	5	10	20	50	100	200	
29	Design point rainfall (PT	Harshfield, To S	a.s. mm)		32.623	55.034	71.988	88.942	111.353	128.307	145.261	
30	Design point rainfall (PT	TR102/RLMA-SA	AWS. 6-h < To ≦ 16	_{8-h} , mm)	53.951	77.925	97.899	118.877	150.837	178.806	209.757	
31	Design point rainfall inte	ensity (I _T , mr	n/h)		1.126	1.627	2.044	2.482	3.149	3.733	4.380	
32	Areal reduction factor (A	ARF, %)			79.435	79.435	79.435	79.435	79.435	79.435	79.435	
33	Average design rainfall i	ntensity (I _{T A}	_{vg} , mm/h)		0.895	1.292	1.624	1.972	2.502	2.966	3.479	
34					REGIO	NAL RUNO	FF COEFF					
35	Return period (T, years)				2	5	10	20	50	100	200	
36	Regional calibration fact	tors			C ₂	1	15	%	C ₁₀₀		60	%
37	Regional runoff coefficient (C _T)			0.150	0.312	0.397	0.467	0.546	0.600	0.648		
38	Constant (a) TABLE 8		2.230	2.470	3.500	1.840	2.320	2.440	2.400			
39	Constant (b)		-0.090	-0.120	-0.200	-0.180	-0.170	-0.190	-0.210			
40	SDF Adjustment factor (F) (Van Bladeren, 2005)			1.014	0.864	0.608	0.381	0.524	0.462	0.382		
41	Original peak flow (Q	r, m°/s)			230	/10	1134	1018	2402	5129	3966	
42	Adjusted peak flow (C	djusted peak flow (Q _{SDF} , m ³ /s)				821	1866	4251	4585	6766	10387	

Figure 22: SDF regional map of South Africa (Alexander, 2002)

2.10 Synthetic Unit Hydrograph (SUH) Method

2.10.1 Pre-requisite input and linked worksheets

The *Catchment Information* and *Design Rainfall* worksheets are pre-requisite input for this worksheet. The *Synthetic Unit Hydrograph Method* worksheet is also linked to the *Catchment Slope, Channel Slope, SUH Runoff Factors, Q/Q_P Information* and *SUH S-curve Lag* worksheets.

2.10.2 Input ranges and comments

Input range identifier:

Single cell and cell range entries (light-green shaded and unprotected) and spinner buttons which enable the user to increase or decrease the veld-type number associated with a specific veld-type region. Click and hold the mouse cursor in position to read any comment box (cells with red flags).

Physical catchment characteristics:

Cell range

B9:B11: Enter the area distribution (%) associated with the veld-type region number in *cell range D9:D11*. Use the spinner button to increase or decrease the veld region number in the latter cell range.
Click on the VELD-TYPE MAP button to view the "General Veld-type Region" map to enable the selection of the appropriate region.

<u>Note:</u> The sum of *cell range B9:B11* must be equal to 100%.

Design rainfall information:

Cells

- D15 & H15: Select the appropriate return period (years) from the group box (drop-down list, 7 options available, e.g. 100) to be used in the design rainfall and flood estimation. Repeat this process until all the return periods were evaluated.
- *Cell A17:* Click and hold the mouse cursor in position. The following comment box with instructions will appear on screen:

RLMA-SAWS/TR102 DESIGN RAINFALL:5 GROUPED USER-DEFINED STORM DURATIONS RELATED TO THE TIME OF CONCENTRATION (T_c) AND/OR LAGTIME (T_L), e.g. 0.25, 0.5, 1, 1.5 and 2 T_c or T_L COULD BE USED IN CELL RANGE C17: G17.1' x 1' GRID RLMA&SI DESIGN RAINFALL (Smithers & Schulze, 2003):5 GROUPED USER-DEFINED STORM DURATIONS OF BETWEEN 0.250 hour (15 minutes) & 168 hour (7 days) COULDBE USED IN CELL RANGE C17: G17, BUT THESE DURATIONS MUST CORRESPOND WITH THE DURATIONS ENTEREDIN THE DESIGN RAINFALL WORKSHEET.THE DECIMAL ACCURACY OF THE STORM DURATIONS IS TO THE NEAREST 0.125 hour. HOWEVER, THE DECIMALACCURACY OF THE STORM DURATIONS MUST ALSO CORRESPOND WITH THE INCREMENTAL TIME INTERVAL(e.g. 0.25, 0.5 or 1 hour) SELECTED IN CELL E55.

Cell range

C17:G17: <u>Comment</u>: "Storm duration range (0.25-168 hours): Use the same incremental time interval (0.25, 0.5 or 1 hour) as selected in *cell E55*."

Cell C22: Only applicable if the 1' x 1'Grid RLMA&SI design rainfall method was selected at the *Catchment Information* worksheet.
 <u>Comment:</u> "Enter a user-defined ARF or an ARF equal to the default ARF in *cell C21*. To exclude the use of an ARF, enter a value of 100 (recommended)."

An example of the SUH method design rainfall information screen is shown in Figure 23.

	A	E	3	С	D	E	F	G	Н		J	К	L
1	НОМЕ	PRINT	SYN	тнетіс	UNIT HY	/DROGF	RAPH M	ETHOD		C INI	ATCHMENT FORMATION		
2	Secondary drainage region numbe	r		C5		Main water	course/river			Modder Rive	r		
3	Tertiary drainage region number			C52		Designed				OJ Gericke			
4	Quaternary drainage region numbe	er		C52A- G		Checked				JA du Pless	is		
5	Catchment description			Krugersdrif	t Dam	Date				June 15, 200)9		
6			P	HYSICAL	CATCHME	ENT CHAR	ACTERIS	TICS					
7	Size of catchment (A)		6331		km²	Hydraulic ler	ngth of catchi	ment (L)		186	.696	km	
8	MAP		518		mm	Average cha	nnel slope (S	сн)	CHANNEL	0.0	0131	m/m	
9	Veld-type region (%) and number	97.29		[=	4	Average cate	chment slope	(S)	SLOPE	0.04	4186	m/m	
10	Veld-type region (%) and number	2.71	VELD-TYPE M	IAP	7	Lag time (T _L)		SLOPE	37.	666	hours	
11	Veld-type region (%) and number				6	Time of cond	centration (T _C)		47.	875	hours	
12	Distance to catchment centroid (L _C)		113.015		km	Catchment-i	ndex (I _C)			58285	56.728		
13	Regional coefficient (K _U)		0.384			Peak flow of	1-hour unit h	ydrograph (C	Q _P)	64.	557	m ³ /s	
14				DESI	GN RAINF/	ALL INFOF	RMATION						
15	Return period (T, years)			100	-		years		200	•		years	
17	Storm duration (T _{SD} , hours)		,	12.00	14.00	16.00	18.00	20.00	12.00	14.00	16.00	18.00	20.00
18	Design point rainfall (P _{T M&P} , mm)			138.858	141.732	144.228	146.438	148.424	156.215	159.448	162.256	164.743	166.977
19	Design point rainfall (P _{T RLMA&SI} , mm)	DESIG	IN RAINFALL										
20	Design point rainfall intensity (I _T , mm/h)		11.571	10.124	9.014	8.135	7.421	13.018	11.389	10.141	9.152	8.349
21	Areal reduction factor (ARF, %)			71.105	72.105	72.955	73.693	74.343	71.105	72.105	72.955	73.693	74.343
22	Areal reduction factor (ARF _{RLMA&SI})												
23	Average design rainfall (P _{T Avg} , mm)			98.700	102.200	105.200	107.900	110.300	111.100	115.000	118.400	121.400	124.100
24	Flood runoff factor (f _T , % & Area ≤1 000) km ²) SUI	H RUNOFF										
25	Flood runoff factor (f _T , % & Area >1 000) km²) F	ACTORS	30.204	30.832	31.370	31.855	32.285	32.429	33.128	33.738	34.273	34.749
46	Effective average design rainfall (PTE, n	nm)		29.811	31.510	33.001	34.371	35.611	36.028	38.098	39.946	41.607	43.124

Figure 23: SUH method design rainfall information

SUH S-curve lagging:

Cell E55: <u>Comment:</u> "An incremental time interval (t) of 0.25, 0.5 or 1 hour can be used to represent the storm duration (T_{SD}) ."

Click on the **SUH S-CURVE LAG** button to access the *SUH S-curve Lag* worksheet. The following applies:

SUH S-curve lag (1 hour):

Only applicable if *cell E55* (*SUH Method* worksheet) equals 1 hour. Time intervals ranging from zero to 168 hours (7 days) can be evaluated.

Cell FS11: Click and hold the mouse cursor in position. The following comment box with the S-curve lag instructions will appear on screen:

THE BEGINNING OF ANY S-CURVE LAG IN COLUMNS FT to FX IS WHERE THE TIME-VALUE (t, hours) IN COLUMN A12: A179 EQUALS THE NUMERICAL VALUE, e.g. 12.0 IN THE FT, FU, FV, FW & FX COLUMN HEADINGS.

SET THE BEGINNING OF THE S-CURVE LAG (BASED ON A SPECIFIC STORM DURATION) IN COLUMNS FT, FU, FV, FW & FX EQUAL TO CELL FS11 BY ENTERING THE FOLLOWING FORMULA, =FS11.

USE COPY & PASTE FORMULAS TO COPY THIS FORMULA UP UNTIL THE END OF EACH COLUMN IN CELL RANGE FT12: FX179.

SUH S-curve lag (0.5 hour):

Only applicable if *cell E55 (SUH Method* worksheet) equals 0.5 hour. Time intervals ranging from zero to 84 hours (3¹/₂ days) can be evaluated.

Cell FS186: Click and hold the mouse cursor in position. The following comment box with the S-curve lag instructions will appear on screen:

THE BEGINNING OF ANY S-CURVE LAG IN COLUMNS FT to FX IS WHERE THE TIME-VALUE (t, hours) IN COLUMN A187: A354 EQUALS THE NUMERICAL VALUE, e.g. 12.0 IN THE FT, FU, FV, FW & FX COLUMN HEADINGS.

SET THE BEGINNING OF THE S-CURVE LAG (BASED ON A SPECIFIC STORM DURATION) IN COLUMNS FT, FU, FV, FW & FX EQUAL TO CELL FS186 BY ENTERING THE FOLLOWING FORMULA, =FS186.

USE COPY & PASTE FORMULAS TO COPY THIS FORMULA UP UNTIL THE END OF EACH COLUMN IN CELL RANGE FT187: FX354.

SUH S-curve lag (0.25 hour):

Only applicable if *cell E55* (*SUH Method* worksheet) equals 0.25 hour. Time intervals ranging from zero to 42 hours (1³/₄ days) can be evaluated.

THE BEGINNING OF ANY S-CURVE LAG IN COLUMNS FT to FX IS WHERE THE TIME-VALUE (t, hours) IN COLUMN A362: A529 EQUALS THE NUMERICAL VALUE, e.g. 12.0 IN THE FT, FU, FV, FW & FX COLUMN HEADINGS. SET THE BEGINNING OF THE S-CURVE LAG (BASED ON A SPECIFIC STORM DURATION) IN COLUMNS FT, FU, FV, FW & FX EQUAL TO CELL FS361 BY ENTERING THE FOLLOWING FORMULA, =FS361. USE COPY & PASTE FORMULAS TO COPY THIS FORMULA UP UNTIL THE END OF EACH COLUMN IN CELL RANGE FT362: FX529.

Figure 24 displays an extract of the S-curve lagging results as obtained using above-listed instructions.

	A	В	С	D	E F	G	Н		J	K L
1	НОМЕ	PRINT SYN	тнетіс		/DROGRAPH M	ETHOD		C. INI	ATCHMENT FORMATION	
2	Secondary drainage region numbe	r	C5		Main watercourse/rive	r		Modder Rive	r	
3	Tertiary drainage region number		C52		Designed			OJ Gericke		
4	Quaternary drainage region number	r	C52A- G		Checked			JA du Pless	is	
5	Catchment description		Krugersdrift	Dam	Date			June 15, 200)9	
55	S-CURVE LAGGING	T (1)		T _{SD} =	1.000		U	NIT HYDROG	RAPHS (hou	rs)
56		l ime (t, hours)	UIL	Q/Q _P	S-curve (S ₁)	12.0	14.0	16.0	18.0	20.0
57		0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
58	Q/Q₂ INFORMATION	1	0.027	0.006	0.006	0.000	0.000	0.000	0.000	0.000
59		2	0.053	0.011	0.017	0.001	0.001	0.001	0.001	0.001
60		3	0.080	0.018	0.035	0.003	0.003	0.002	0.002	0.002
61		4	0.106	0.025	0.060	0.005	0.004	0.004	0.003	0.003
62		5	0.133	0.033	0.093	0.008	0.007	0.006	0.005	0.005
63	SUH S-CURVE LAG	6	0.159	0.038	0.131	0.011	0.009	0.008	0.007	0.007
64		7	0.186	0.040	0.171	0.014	0.012	0.011	0.010	0.009
65		8	0.212	0.047	0.218	0.018	0.016	0.014	0.012	0.011
66		9	0.239	0.062	0.281	0.023	0.020	0.018	0.016	0.014
67		10	0.265	0.075	0.356	0.030	0.025	0.022	0.020	0.018
68		11	0.292	0.085	0.440	0.037	0.031	0.028	0.024	0.022
69		12	0.319	0.096	0.537	0.045	0.038	0.034	0.030	0.027
70		13	0.345	0.107	0.644	0.053	0.046	0.040	0.036	0.032
71	_	14	0.372	0.122	0.766	0.062	0.055	0.048	0.043	0.038
72		15	0.398	0.136	0.902	0.072	0.064	0.056	0.050	0.045
73		16	0.425	0.154	1.056	0.083	0.074	0.066	0.059	0.053
74		17	0.451	0.174	1.231	0.095	0.085	0.077	0.068	0.062
75	-	18	0.478	0.198	1.428	0.108	0.098	0.088	0.079	0.071
76	-	19	0.504	0.229	1.657	0.124	0.112	0.101	0.092	0.083
77		20	0.531	0.299	1.956	0.145	0.130	0.118	0.108	0.098
78		21	0.558	0.403	2.359	0.1/3	0.156	0.142	0.129	0.118
79		22	0.584	0.576	2.936	0.215	0.194	0.1/5	0.160	0.146
80		23	0.611	0.755	3.691	0.271	0.244	0.220	0.200	0.183
81		24	0.637	0.900	4.591	0.338	0.303	0.273	0.248	0.227
82		25	0.664	0.980	5.571	0.411	0.366	0.331	0.300	0.274
83	-	20	0.690	0.993	0.503	0.463	0.430	0.366	0.353	0.322
84	-	27	0.717	0.995	7.550	0.000	0.494	0.445	0.404	0.369
85		20	0.743	0.900	0.040	0.624	0.000	0.501	0.455	0.410
00		29	0.700	0.947	3.434	0.009	0.667	0.003	0.503	0.401
01		30	0.790	0.090	11.309	0.747	0.00/	0.646	0.547	0.502
00		30	0.023	0.035	11.224	0.836	0.714	0.683	0.000	0.539
0.9		32	0.000	0.707	10 711	0.000	0.794	0.003	0.656	0.575
01		34	0.070	0.674	13 385	0.003	0.816	0.747	0.685	0.631
92		35	0.929	0.628	14.013	0.860	0.832	0.772	0.710	0.656

Figure 24: SUH S-curve lagging results

Cell FS361: Click and hold the mouse cursor in position. The following comment box with the S-curve lag instructions will appear on screen:

Click on the **SYNTHETIC UNIT HYDROGRAPH** button to return to the *SUH Method* worksheet. The following applies:

Summary of peak flows:

Cell B54: <u>Comment:</u> "The SUH method can only estimate peak flows for two return periods at a time. After every two return period selections, the results must be entered in the applicable cell within *cell range C54:K54*, before proceeding to the next analysis."

The peak flow adjustment calculations and summary of peak flows are illustrated in Figure 25.

	A	В	С	D	E	F	G	Н		J	K	L
1	НОМЕ	PRINT SYN	тнетіс	иніт ну	DROGF	RAPH MI	ETHOD		C. INI	ATCHMENT FORMATION		
2	Secondary drainage region numbe	r	C5		Main water	course/river			Modder Rive	r		
3	Tertiary drainage region number	C52	C52 Designed									
4	Quaternary drainage region number	C52A- G		Checked				JA du Pless	is			
5	Catchment description	Krugersdrift Dam Date				June 15, 200)9					
47	PEAK FLOW	Return period (T)	100	-		years		200	•		years	
48	ADJUSTMENTS	Storm duration (T _{SD} , hours)	12.00	14.00	16.00	18.00	20.00	12.00	14.00	16.00	18.00	20.00
49		SUH peak (Q _{PT} , m ³ /s)	56.215	53.775	51.632	49.576	47.577	56.215	53.775	51.632	49.576	47.577
50		Peak flow (Q _T , m ³ /s)	1675.843	1694.479	1703.925	1703.991	1694.230	2025.330	2048.723	2062.503	2062.721	2051.692
51		Q _{PT} /Q _P <1	0.995	0.995	0.995	0.995	0.995	0.995	0.995	0.995	0.995	0.995
52		Adjusted peak flow (Q _{TA} , m ³ /s)	1667	1685	1695	1695	1685	2014	2038	2051	2052	2041
53	SUMMARY OF	Return period (T, years)	2	5	10	20	5	50	1	00	2	00
54	PEAK FLOWS	236	393	572	804	12	222	16	695	20)52	

Figure 25: Peak flow adjustments and summary

2.10.3 Calculation procedure

Physical catchment characteristics:

$$I_C = \frac{L L_C}{\sqrt{S_{CH}}}$$
(37)

$$T_L = C_T I_C^{0.36} (38)$$

$$Q_P = K_U \frac{A}{T_L}$$
(39)

where:

A = catchment area [km²],

 C_T = regional SUH veld-type coefficient [Table 2],

 I_C = catchment-index,

Flood Hydrology Course 22- 24 May 2023

- K_U = regional SUH coefficient,
- L = hydraulic length of catchment [km],
- L_C = distance to catchment centroid [km],
- Q_P = peak flow of 1-hour unit hydrograph [m³/s]
- S_{CH} = average main watercourse slope [m/m], and
- T_L = lag time [hours].

Table 2:	Generalised	regional	SUH '	veld-type	coefficients	(HRU.	1972)
	Contrainsea	regionai		, era cype	cocincienco	(110)	1/10/

Veld region	Veld-type description	C_T
1	Coastal tropical forest	0.99
2	Schlerophyllous bush	0.62
3	Mountain sourveld	0.35
4	Grassland of interior plateau	0.32
5	Highland sourveld and Dohne sourveld	0.21
5A	Zone 5, soils weakly developed	0.53
6	Karoo	0.19
7	False Karoo	0.19
8	Bushveld	0.19
9	Tall sourveld	0.13

Design rainfall information:

The following DDF relationships (based on user-defined critical storm durations related to T_C and T_L using a trail-and-error approach) of averaged design rainfall information are possible options in the SUH method:

- (a) Midgley and Pitman (M&P) DDF relationship based on LEV1 distributions (Midgley and Pitman, 1978); and
- (b) DDF relationship based on the RLMA&SI approach.

Design point rainfall (PT M&P):

Refer to Section 2.6.3.

Design point rainfall (PT RLMA&SI):

Refer to Section 2.6.3.

Design point rainfall intensity (I_T):

Refer to Section 2.6.3.

Areal reduction factors:

Refer to Section 2.6.3.

Average and effective design rainfall:

$$P_{TAvg} = \frac{ARF}{100} P_T \tag{40}$$

$$P_{TE} = \frac{f_T}{100} P_{TAvg} \tag{41}$$

where:

ARF= areal reduction factor [%], f_T = flood runoff factor [%, Figure 26], P_T = design point rainfall [mm], P_{TAvg} = average design rainfall [mm], and P_{TE} = effective average design rainfall [mm].

Peak flow and adjusted peak flow:

$$Q_{PT} = Q_P * U H_{Max (n-hour)}$$
(42)

$$Q_T = P_{TE} * Q_{PT} \tag{43}$$

$$Q_{TA} = Q_T \frac{Q_{PT}}{Q_P} \tag{44}$$

where:

 Q_P = peak flow of 1-hour unit hydrograph [m³/s],

 Q_{PT} = peak flow of *n*-hour unit hydrograph [m³/s],

$$Q_T$$
 = peak flow for *T*-year return period [m³/s],

 Q_{TA} = adjusted peak flow for *T*-year return period [m³/s],

 P_{TE} = effective average design rainfall [mm], and

 UH_{Max} = maximum *n*-hour unit hydrograph value.

Figure 26 shows the average storm losses chart normally used to estimate the flood runoff factors manually. However, in the DFET, this chart is included numerically and no user input is required, except for the area distribution (%) associated with the different veld-type regions (Figure 27) when the catchment under consideration extends over more than one veld-type region.

Flood Hydrology Course

Figure 26: Average storm losses (SANRAL, 2006)

Figure 27: Regions with generalised veld-types in South Africa (SANRAL, 2006)

2.11 Lag-routed Hydrograph (LRH) Method

2.11.1 Pre-requisite input and linked worksheets

The *Catchment Information* and *Design Rainfall* worksheets are pre-requisite input for this worksheet. This worksheet is also linked to the *Channel Slope, LRH Runoff Factors* and *Rainfall Distribution* worksheets. The *Rainfall distribution over Time* chart can be viewed by clicking on the **RAINFALL DISTRIBUTION** button.

2.11.2 Input ranges and comments

Input range identifier:

Single cell entries (light-green shaded and unprotected), option buttons and spinner buttons which enable the user to increase or decrease the veld-type number associated with a specific veld-type region. Click and hold the mouse cursor in position to read any comment box (cells with red flags).

Physical catchment characteristics:

Cell range

- B9:B11: Enter the area distribution (%) associated with the veld-type region number in *cell range D9:D11*. Use the spinner button to increase or decrease the veld region number in the latter cell range.
 Click on the VELD-TYPE MAP button to view the "General Veld-type Region" map to enable the selection of the appropriate region.
- *Note:* The sum of *cell range B9:B11* must be equal to 100%.
- *Cell 112:* Select the appropriate option button contained in the Muskingum routing factor group box by indicating either "Veld-type based" or " T_C based". If "Veld-type based" is selected, the routing factor (*K*) contained in *cell 111* will be used. By selecting " T_C based," the routing factor (*K*) contained in *cell 110* will be used.

Design rainfall information:

Cell C21: Only applicable if the 1' x 1'Grid RLMA&SI design rainfall method was selected at the *Catchment Information* worksheet.
 <u>Comment:</u> "Enter a user-defined ARF or an ARF equal to the default ARF in *cell range C20:J20.* To exclude the use of an ARF, enter a value of 100 (recommended)."

2.11.3 Calculation procedure

Physical catchment characteristics:

$$\Delta t = 0.05T_C \tag{45}$$

$$K_1 = 0.6T_C \tag{46}$$

$$K_2 = C_T A^{0.318} (47)$$

$$C_0 = -\frac{K_n}{\Delta t} \left(1 - C_2 \right) + 1 \tag{48}$$

$$C_{1} = \frac{K_{n}}{\Delta t} (1 - C_{2}) - C_{2}$$
(49)

$$C_2 = e^{-\frac{\Delta t}{K_n}} \tag{50}$$

where:

A = catchment area [km²],

 C_T = regional LRH veld-type coefficient [Table 3],

- C_0 = Muskingum routing coefficient,
- C_1 = Muskingum routing coefficient,
- C_2 = Muskingum routing coefficient,
- K_n = Muskingum routing factor, either T_C based or veld-type based,
- K_1 = Muskingum routing factor, T_C based,
- K_2 = Muskingum routing factor, veld-type based,
- Δt = incremental time step [hours], and
- T_C = time of concentration [hours].

Veld region	Veld-type description	C_T
1	Coastal tropical forest	1.83
2	Schlerophyllous bush	1.30
3	Mountain sourveld	1.10
4	Grassland of interior plateau	0.97
5	Highland sourveld and Dohne sourveld	0.79
6	Karoo	0.86
7	False Karoo	0.48
8 Bushveld		0.45
9	Tall sourveld	0.55

Table 3: Regional LRH veld-type coefficients (Bauer and Midgley, 1974)

An example of the physical catchment characteristics screen illustrating above-listed instructions and calculation procedures is shown in Figure 28.

Figure 28: LRH veld-type regions and Muskingum routing factors

Design point rainfall (P_{T M&P}):

Refer to Section 2.10.3.

Design point rainfall (PT RLMA&SI):

Refer to Section 2.10.3.

Design point rainfall intensity (I_T):

Refer to Section 2.10.3.

Areal reduction factors:

Refer to Section 2.10.3.

Average and effective design rainfall:

Refer to Section 2.10.3.

Rainfall distribution over time:

The estimation of effective average design rainfall is followed by the estimation of rainfall distribution over time. In other words, the excess/effective rainfall as a percentage of the critical storm duration must be estimated. Figure 29 shows the rainfall distribution over time curves used for these estimations.

In the DFET, these curves are included numerically and no user input is required, thus the hydrographs used to derive the hydrographs are determined automatically.

Muskingum routing:

$$Q_{out(N)} = C_0 Q_{in(N)} + C_1 Q_{in(N-1)} + C_2 Q_{out(N-1)}$$

where:

 $C_{0, 1, 2}$ = Muskingum routing coefficients, $Q_{in(N)}$ = routed peak inflow at current time interval [m³/s], $Q_{in(N-1)}$ = routed peak inflow at previous time interval [m³/s], $Q_{out(N)}$ = routed peak outflow at current time interval [m³/s], and $Q_{out(N-1)}$ = routed peak outflow at previous time interval [m³/s].

Peak flows:

$$Q_T = Max \, Q_{out\,(N,T)} \tag{52}$$

where:

 Q_T = peak flow for *T*-year return period [m³/s], and

 $Max Q_{out(N,T)}$ = maximum routed outflow associated with a specific incremental duration and rainfall distribution for the *T*-year return period [m³/s].

Figure 30 is illustrative of the rainfall distribution over time and Muskingum routing results screen.

	A	В	С	D	E	F	G	H I	J K		
1	НОМЕ		-ROUTED	HYDROG	RAPH ME	THOD		CATCH INFORM	MENT ATION		
2	Secondary drainage region num	ber	C5	C5 Main watercourse/river				Modder River			
3	Tertiary drainage region number		C52	52 Designed OJ Gericke							
4	Quaternary drainage region num	ber	C52A- G	C52A- G Checked			JA du Pless	JA du Plessis			
5	Catchment description		Krugersdrift Dan	1	Date			June 15, 200	June 15, 2009		
46	RAINFALL DISTRIB	UTION OVER TIME			M	USKINGUM	ROUTING				
47	Duration-increment used	5% RAINFALL DISTRIBUTION	1: 2 year	1: 5 year	1: 10 year	1: 20 year	1: 50 year	1: 100 year	1: 200 year		
48	Increment of duration (%)	Increment of precipitation (%)	Routed (Out _i)								
49	0	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
50	5	1.44	2.861	4.678	6.851	9.621	14.531	20.383	24.769		
51	10	3.78	10.036	16.408	24.031	33.750	50.973	71.500	86.885		
52	15	5.84	17.820	29.134	42.670	59.926	90.507	126.955	154.274		
53	20	10.04	28.693	46.909	68.702	96.487	145.726	204.410	248.396		
54	25	16.29	46.853	76.598	112.185	157.555	237.958	333.785	405.610		
55	30	24.40	71.193	116.392	170.466	239.406	361.579	507.189	616.327		
56	35	33.76	99.644	162.905	238.588	335.077	506.074	709.873	862.625		
57	40	43.91	129.795	212.199	310.784	436.471	659.210	924.679	1123.652		
58	45	53.71	158.367	258.911	379.197	532.551	804.322	1128.228	1371.002		
59	50	63.16	183.260	299.607	438.800	616.258	930.747	1305.565	1586.498		
60	55	71.00	202.303	330.739	484.397	680.295	1027.462	1441.229	1751.355		
61	60	78.13	215.328	352.035	515.585	724.097	1093.618	1534.026	1864.119		
62	65	83.40	222.242	363.339	532.141	747.348	1128.734	1583.283	1923.976		
63	70	87.78	223.246	364.979	534.543	750.722	1133.829	1590.431	1932.662		
64	75	90.64	219.463	358.795	525.486	738.001	1114.618	1563.482	1899.914		
65	80	93.33	212.720	347.771	509.341	715.327	1080.373	1515.447	1841.542		
66	85	95.40	204.943	335.056	490.719	689.175	1040.874	1460.041	1774.214		
67	90	97.20	196.063	320.538	469.455	659.311	995.770	1396.774	1697.333		
68	95	99.09	187.556	306.631	449.087	630.706	952.567	1336.173	1623.692		
69	69 100 100.00			290.952	426.124	598.456	903.860	1267.851	1540.669		
70						Return period	l (T, years)				
71	FEART	LONG	2	5	10	20	50	100	200		
72	Peak flow	223	365	535	751	1134	1590	1933			

Figure 30: Rainfall distribution over time and Muskingum routing results

2.12 Empirical Methods

2.12.1 Pre-requisite input and linked worksheets

The *Catchment Information* and *Design Rainfall* worksheets are pre-requisite input for this worksheet. This worksheet is also linked to the *Catchment Slope*, *Channel Slope* and *Design Tables* worksheets.

2.12.2 Input ranges and comments

Input range identifier:

Single cell entries (light-green shaded and unprotected), group box (drop-down list), option buttons and spinner buttons.

Physical catchment characteristics:

Cell range

A10:A12: Enter the Kovács region %-distribution associated with the Kovács region number selected from the group box (drop-down list, 8 options available). Click on the Kovács MAP button to view the "Kovács Region" map to enable the selection of the appropriate region(s).

<u>Note:</u> The sum of *cell range B10:B12* must be equal to 100%.

Cell range

- *F10:F12:* Enter the area distribution (%) associated with the veld-type region number in *cell range G10:G12.* Use the spinner button to increase or decrease the veld region number in the latter cell range.
 Click on the VELD-TYPE MAP button to view the "General Veld-type Region" map to enable the selection of the appropriate region.
- *<u>Note:</u>* The sum of *cell range F10:F12* must be equal to 100%.
- *Cell G13:* Select the appropriate option button contained in the veld- type/rainfall group box by indicating either "Winter" or "All year". If "Winter" is selected, the regional distribution coefficient (K_T) used in the MIPI method will be based on the above selected veld-type regions and winter rainfall, while "All year" will reflect the chosen veld-type regions and summer/all year rainfall.

Design notes:

Cell range

A79:A86: The user can enter any comments/design notes/recommendations in this cell range.

2.12.3 Calculation procedure

Physical catchment characteristics:

$$C = \frac{A\sqrt{S_{CH}}}{LL_c}$$
(53)

where:

C = catchment response time parameter,

A = catchment area [km²],

L = hydraulic length of catchment [km],

 L_C = distance to catchment centroid [km], and

 S_{CH} = average main watercourse slope [m/m].

An example of the physical catchment characteristics screen illustrative of above-listed instructions and estimation procedures is shown in Figure 31.

	A		С	D	E	F	G	H I
1	HOME PRINT		EMPIF	RICAL N	ETHODS	CAT INFO	CHMENT RMATION	
2	Secondary drainage region number	C5			Main watercourse/r	iver	Modder River	
3	Tertiary drainage region number	C52			Designed		OJ Gericke	
4	Quaternary drainage region number	C52A- G			Checked		JA du Plessis	3
5	Catchment description	Krugersdrift	Dam		Date		June 15, 2009)
6	6 PHYSICAL CATCHMENT CHARACTERISTICS							
7	Size of catchment (A)	633	6331 km ² Hydraulic length of catchment (L) CHANNEL			186.69	96 km	
8	Rainfall region	Inland/s	ummer		Average channel slope (S _{CH})		0.0013	31 m/m
9	MAP	51	8	mm	Average catchment s	lope (S) SLOPE	0.0418	36 m/m
10	Kovács region (%)	35.79	Kovács reg	gion K4 🗖	Veld-type region (%) 97.29 •	}	4
11	Kovács region (%) KOVÁCS MAP	64.21	Kovács reg	gion K5 🗖 🗖	Veld-type region (%) 2.71	3	7
12	Kovács region (%)		Kovács reg	gion K6 🗖 🗖	Veld-type region (%)	3	6
13	RMF-Kovács value		4.857		Veld-type	VELD-TYPE MAP	WINTER	ALL YEAR
14	Catchment response time parameter (C)	e time parameter (C) 0.0109 Distance to catchment centroid (L _C)		113.01	15 km			

Figure 31: Physical catchment characteristics screen of Empirical methods

Midgley and Pitman (MIPI) method:

$$Q_T = 0.0377 K_T MAP A^{0.6} C^{0.2}$$
(54)

where:

= peak flow for *T*-year return period $[m^3/s]$, Q_T

Α = catchment area [km²],

С = catchment response time parameter,

= regional distribution coefficient, and K_T

MAP = mean annual precipitation [mm].

Catchment Parameter (CAPA) method:

$$M = MAP\left(\sqrt{\frac{100SA^{0.5}}{L}}\right)$$
(55)

$$K_P = x \log(MAP)^{y} \tag{56}$$

$$MAF = 10^{(a+0.61\log A)}$$
(57)

$$Q_T = K_P M A F \tag{58}$$

where:

Α = catchment area [km²],

= exceedance probability constant, K_P

L = hydraulic length of catchment [km],

= lumped catchment parameter, М

$$MAF = \text{mean annual flood } [\text{m}^3/\text{s}],$$

= peak flow for *T*-year return period $[m^3/s]$, Q_T

= average catchment slope [m/m], S

$$T$$
 = return period [years],

$$a = -0.9414 + 1.08073 (\log(M) - 2.0163)^{0.7384},$$

x = 99.51 log
$$\left(\frac{1}{T}\right)^4$$
 - 5.95 log $\left(\frac{1}{T}\right)^2$ + 0.722, and

y =
$$0.28\log\left(\frac{1}{T}\right)^4 + 2.22\log\left(\frac{1}{T}\right)^3 + 6.82\log\left(\frac{1}{T}\right)^2 + 10.92\log\left(\frac{1}{T}\right) + 2.73$$

57

(59)

Regional Maximum Flood (RMF) method:

$$Q_{RMF1} = 10^6 \left(\frac{A}{10^8}\right)^{1-0.1K}$$

Table 4 presents all the Q_{RMF2} equations as proposed by Kovács (1988) for the different Kovács regions in Southern Africa.

Regional	Tran	sition zone	Flood zone		
constant (K)	Q_{RMF2} (m ³ /s)	Areal range (km ²)	Q_{RMF2} (m ³ /s)	Areal range (km ²)	
2.8	$30A^{0.262}$	1 - 500	$1.74A^{0.720}$	500 - 500 000	
3.4	$50A^{0.265}$	1 - 300	$5.25A^{0.660}$	300 - 500 000	
4	$70A^{0.340}$	1 - 300	$15.9A^{0.600}$	300 - 300 000	
4.6	100A ^{0.380}	1 - 100	$47.9A^{0.540}$	100 - 100 000	
5	$100A^{0.500}$	1 - 100	$100A^{0.500}$	100 - 100 000	
5.2	$100A^{0.560}$	1 - 100	$145A^{0.480}$	100 - 30 000	
5.4	$100A^{0.620}$	1 - 100	$209A^{0.460}$	100 - 20 000	
5.6	$100A^{0.680}$	1 - 100	$302A^{0.440}$	100 - 10 000	

Table 4: RMF regional classification in Southern Africa (SANRAL, 2006	6)
---	----

where:

A = catchment area [km²],

K = Kovács regional constant,

 Q_{RMF1} = RMF based on the Francou-Rodier methodology [Equation 59, m³/s], and

 Q_{RMF2} = RMF based on the Kovács methodology [Equations in Table 4, m³/s].

The layout of the *Empirical Methods* worksheet containing the design flood estimation results is shown in Figure 32, while Figure 33 is illustrative of the maximum flood peak regions in Southern Africa, in other words, the Kovács regions.

	A		С	D	E	F	G	H I
1	HOME PRINT	CAT INFO	CHMENT RMATION					
2	Secondary drainage region number	C5 Main wate			Main watercourse/riv	e/river Modder River		
3	Tertiary drainage region number	C52			Designed		OJ Gericke	
4	Quaternary drainage region number	C52A- G			Checked		JA du Plessi	is
5	Catchment description	Krugersdrift	Dam		Date		June 15, 200)9
15		MIDGLEY	AND P	ITMAN MET	THOD (MIPI, HRU 1/7	1)		
16	Return period (T, years)		10		20	50		100
17	Regional distribution coefficient (K _T)		0.592		0.686	0.958	1	.211
18	Peak flow (Q _T , m ³ /s)		894		1037	1448	1	1829
19		CATCHI	MENT P	ARAMETE	R (CAPA) METHOD)		
20	Return period (T, years)	2	5	10	20	50	100	200
21	Lumped catchment parameter (M)	692.502	692.502	692.502	692.502	692.502	692.502	692.502
25	Probability of exceedance constant (K _P)	1.000	2.247	3.449	4.965	7.486	9.511	11.504
26	Mean annual flood (MAF, Q _{50%} , m ³ /s)	206.243	206.243	206.243	206.243	206.243	206.243	206.243
27	Peak flow (Q _T , m ³ /s)	206	463	711	1024	1544	1962	2373
28		REGION	AL MAX	IMUM FLO	OD (RMF) METHOD)		
29	Peak flow (Q _{RMF1} , m ³ /s, Francou-Rodier)				6928			
30	KOVÁCS REGIONALISATION	Transition zone < 100			0 km^2 Flood zone \leq		100000 km ²	
31	Peak flow (Q _{RMF2} , m ³ /s)	6105			7045			
32	MIPI/RMF RATIOS (Q _T /Q _{RMF})							
33	Return period (T, years)	2	5	10	20	50	100	200
34	Weighted $Q_{T/RMF}$ ratio: A $\leq 10 \text{ km}^2$				1			
35	Weighted Q _{T/RMF} ratio: 10 < A ≤ 3 000 km²	DESIGN TABLES		S				
36	Weighted $Q_{T/RMF}$ ratio: 3 000 < A \leq 100 000 km ²	ed Q _{T/RMF} ratio: 3 000 < A ≤ 100 000 km²				0.492	0.591	0.692
77	77 Q _T /Q _{RMF} ratio peak flow (Q _T , m ³ /s					3409	4097	4796

Figure 32: Empirical flood estimation results

Figure 33: Maximum flood peak (Kovács) regions in Southern Africa (SANRAL, 2006)

3. PROBABILISTIC METHODS

3.1 Annual Maximum Series (AMS)

3.1.1 Pre-requisite input and linked worksheets

The *Catchment Information* worksheet is a pre-requisite input for this worksheet. The *Annual Maximum Series* worksheet is also linked to the *Probabilistic Methods (AMS)* worksheet.

3.1.2 Input ranges and comments

Input range identifier:

Single cell and cell range entries (light-green shaded and unprotected). Click and hold the mouse cursor in position to read any comment box (cells with red flags).

Note:

The annual maximum series as obtained from the Department of Water Affairs (DWA) monthly flood peak database must be copied into *cell ranges D14:D213*, *F14:F213* and *G14:G213*, if applicable. Use *Copy & Paste values* to retain the cell format. A maximum period of 200 years can be used. Enter the start date (year) of the data period in *cell A14*.

Base flow-gauging station:

Cell D7:	Compulsory.
	Enter the flow-gauging station name, e.g. Krugersdrift Dam. It can either be a
	dam or a river flow-gauging station.
Cell D8:	Compulsory.
	Enter the flow-gauging station number, e.g. C5R004.
Cell D10:	Compulsory.
	Enter the structural limit (m^3/s) of the flow-gauging station. If the structural
	limit is unknown, enter the peak flow as estimated with the RMF method.
Cell A14:	Click and hold the mouse cursor in position.
	Comment: "Enter the start date (year) of data period."

Cell range

D14:D213: Copy the annual maximum peak flow data into this cell range or a part thereof. Use *Copy & Paste values* to retain the cell format.

Additional station 1/2 (US/DS):

Cell F6/G6: Click and hold the mouse cursor in position. The following comment box related to the use of additional stations will appear on screen:

THE ANNUAL MAXIMUM SERIES (m³/s) OF THE ADDITIONAL STATIONS ARE USED TO SUPPLEMENT/EXTEND THE RECORD LENGTH OF THE BASE STATION.

COPY THE ANNUAL MAXIMUM SERIES INTO THE "REQUIRED PART" OF CELL RANGE F14: F213 (STATION 1) or G14:G213 (STATION 2).

THE "REQUIRED PART" REFERS TO THE BASE STATION DATA PERIOD CHARACTERISED BY MISSING DATA.

CELL ENTRIES IN THE SAME ROW OF COLUMNS D, F and G ARE NOT ALLOWED.

IN ALL CASES, USE COPY & PASTE VALUES FOR MULTIPLE ENTRIES.

Cell F7/G7:	Compulsory, if applicable.
	Enter the flow-gauging station name, e.g. Modder River at Stoomhoek. It can
	either be a dam or a river flow-gauging station.
Cell F8/G8:	Compulsory, if applicable.
	Enter the flow-gauging station number, e.g. C5H015.
Cell	
F11/G11:	Compulsory, if applicable.
	Enter the catchment area (km ²) contributing to the specific flow-gauging
	station.
Cell range(s)	
F14:F213 or	

G14:G213: Refer to above-listed comment box.

3.1.3 Calculation procedure

Square root area method (SRAM):

In the SRAM (Equation 60), the AMS or PDS at single sites up- or downstream from one another (in close proximity) could be combined, based on the assumption that the temporal and spatial variability of the flood producing mechanisms in the two or more catchment under consideration are near homogeneous. The SRAM is especially useful to supplement the

record length at dams using data from a flow-gauging station just downstream or upstream from the dam, which might have been operational prior the construction of the dam. However, the homogeneity in these catchments under consideration must be 80% or more (Rademeyer, 2010).

$$Q_{DS} = Q_{US} \left(\frac{\sqrt{A_{DS}}}{\sqrt{A_{US}}} \right)$$
(60)

where:

 Q_{DS} = AMS or PDS at downstream flow-gauging station [m³/s],

 A_{DS} = catchment area contributing to downstream flow-gauging station [km²],

 A_{US} = catchment area contributing to upstream flow-gauging station [km²], and

 Q_{US} = AMS or PDS at upstream flow-gauging station [m³/s].

The AMS worksheet illustrative of above-listed instructions and SRAM is shown in Figure 34.

	A	В	С	D	E	F	G					
1	HON	1E	PRI	NT SQL		AREA METHOD (SRAM)	PROBABILISTIC METHODS (AMS)					
2	NOTE:											
3	THE ANNUAL MAXIMUM SERIES AS OBTAINED FROM THE DEPARTMENT OF WATER AFFAIRS (DWA) MONTHLY FLOOD PEAK DATABASE											
1	MUST BE COPIED INTO CELL RANGES D14:D213, F14:F213 & G14: G213, IF APPLICABLE. USE COPY & PASTE VALUES TO RETAIN THE CELL FORMAT.											
5	A MAXIMUM PERIOD OF 200 YEARS CAN BE USED. ENTER THE START DATE (YEAR) OF THE DATA PERIOD IN CELL A14.											
6	BASE FLOW-GAUGING STATION ADDITIONAL STATION 1 (US/DS) ADDITIONAL STATION 2 (US/DS)											
7	Station nam	e (Dar	n/River)	Krugerso	drift Dam	Modder River at Stoomhoek						
8	Station num	ber (R	/H)	C5F	2004	C5H015						
9	Structural li	mit (H,	m)									
10	Structural lin	mit (Q,	m ³ /s)	30	00							
11	Catchment a	area (A	, km²)	6331	.000	6009.000						
12	Square root	area f	actor	1.0	000	1.026						
13	Year:Start	1	Year: End	Annual Maxii	mum Q (m³/s)	Annual Maximum Q (m³/s)	Annual Maximum Q (m³/s)					
14	1948	1	1949		137.543	134.000						
15	1949	1	1950		773.938	754.000						
16	1950	1	1951		240.188	234.000						
17	1951	1	1952		339.753	331.000						
18	1952	1	1953		1090.083	1062.000						
19	1953	1	1954		187.839	183.000						
20	1954	1	1955		570.703	556.000						
21	1955	1	1956		1642.310	1600.000						
22	1956	1	1957		86.221	84.000						
23	1957	1	1958		56.454	55.000						
24	1958	1	1959		362.335	353.000						
25	1959	1	1960		374.652	365.000						
26	1960	1	1961		153.967	150.000						
27	1961	1	1962		60.560	59.000						
28	1962	1	1963		636.395	620.000						
29	1963	1	1964		985.386	960.000						
30	1964	1	1965		482.428	470.000						
31	1965	1	1966		1087.004	1059.000						
32	1966	1	1967		555.306	541.000						
33	1967	1	1968		537.856	524.000						
34	1968	1	1969		366.440	357.000						
35	1969	1	1970		162.178	158.000						

Figure 34: Annual Maximum Series worksheet with SRAM functionality

3.2 Probabilistic Methods (AMS)

3.2.1 Pre-requisite input and linked worksheets

The *Catchment Information* and *Annual Maximum Series* worksheets are pre-requisite input for this worksheet. The *Probabilistic Methods (AMS)* worksheet is also linked to the *Probabilistic Methods (PDS)* and *Probabilistic Plotting* worksheets.

3.2.2 Input ranges and comments

Input range identifier:

Not applicable, since this worksheet is only used for calculations.

3.2.3 Calculation procedure

Conservation statistics (Missing data excluded):

Normal and log₁₀-transformed data:

$$\bar{x} = \frac{\sum x}{N}$$
(61)

$$\overline{\log x} = \frac{\sum \log(x)}{N}$$
(62)

$$s = \left[\frac{\sum \left(x - \overline{x}\right)^2}{N - 1}\right]^{0.5}$$
(63)

$$s_{log} = \left[\frac{\sum \left(\log(x) - \overline{\log(x)}\right)^2}{N - 1}\right]^{0.5}$$
(64)

$$c_{\nu} = \frac{s}{x} \tag{65}$$

$$c_{\nu} = \frac{s_{\log}}{\log(x)} \tag{66}$$

$$g = \left(\frac{N}{(N-1)(N-2)}\right)\left(\frac{\sum(x-\overline{x})^3}{s^3}\right)$$
(67)

$$g_{log} = \left(\frac{N}{(N-1)(N-2)}\right) \left(\frac{\sum \left(\log(x) - \overline{\log(x)}\right)^3}{s_{\log}^3}\right)$$

where:

= coefficient of variation, C_{V} = coefficient of variation of the observed value logarithms, Cvlog = skewness coefficient, g = skewness coefficient of the observed value logarithms, g_{log} = total number of observations (sample size), Ν = standard deviation of observed values $[m^3/s]$, S = standard deviation of the observed value logarithms $[m^3/s]$, Slog = observed values $[m^3/s]$, х = mean of observed values $[m^3/s]$, and x = mean of observed value logarithms $[m^3/s]$. $\log x$

Conservation statistics (Missing data included; historically weighted variables):

Normal and log₁₀-transformed data:

$$\overline{x_h} = \frac{\left((W_T) \sum x_b + \sum x_a \right)}{\left(Y_T - (W_T) (L_W) \right)}$$
(69)

$$s_h = \left[\frac{\left((W_T)\sum d_b^2 + \sum d_a^2\right)}{(Y_T - (W_T)(L_W) - 1)}\right]^{0.5}$$
(70)

$$g_{h} = \left[\frac{(Y_{T} - (W_{T})(L_{W}))((W_{T})\sum d_{b}^{3} + \sum d_{a}^{3})}{\frac{S^{3}}{(Y_{T} - (W_{T})(L_{W}) - 1)(Y_{T} - (W_{T})(L_{W}) - 2)}}\right]$$
(71)

where:

 $d_a, d_b =$ deviations of $x_a + x_b$ from $\overline{x_h}$,

 g_h = historically weighted skewness coefficient,

 L_W = low outliers including zero flows,

- N_A = floods equal to or above high threshold,
- N_B = floods between high and low thresholds,
- N_C = missing data,
- s_h = historically weighted standard deviation [m³/s],
- W_T = weight applied to data, $\frac{(Y_T N_A)}{N_B}$
- x_a = peak flows equal to or above the high threshold [m³/s],
- x_b = peak flows below the high threshold [m³/s],
- $\overline{x_h}$ = historically weighted mean [m³/s], and
- Y_T = total time span, $N_A + N_B + N_C$ [years].

An example of the *Probabilistic Methods (AMS)* worksheet containing the conservation statistics and historically weighted variables is shown in Figure 35.

	A B	С	D E	F	G	Н		
1	HOME ANNUAL MAXIMUM SERIES		PROBABILISTI	C METHODS (AMS)	PROBABILISTIC	METHODS (PDS)		
2	Secondary drainage region	umber	C5 PRINT	Main watercourse/river		Modder River		
3	Tertiary drainage region nur	iber	C52	Designed		OJ Gericke		
4	Quaternary drainage region	number	C52A- G	Checked		JA du Plessis		
5	Catchment description		Krugersdrift Dam	Date		June 15, 2009		
6	Flow-gauging station name		Krugersdrift Dam	Flow-gauging station number		C5R004		
7			CONSERVAT		PROBABILISTIC P	LOTTING		
8	MISSI	IG DATA EXCLUE	ED	MISSING DATA INCLUDED				
9	Variable	Normal data	Log ₁₀ -transformed data	Variable	Normal data	Log ₁₀ -transformed data		
10	Mean (x _{mean})/Log (x _{mean}) (m ³ /s)	398.322	2.351	Mean (x _h)/Log (x _{h-mean}) (m ³ /s)	398.322	2.351		
11	Total time span (Y _T , years)	60	60	Total time span (Y _T , years)	60	60		
12	Missing data (N _C , years)	0	0	Missing data (N _C , years)	0	0		
13	Standard deviation (s)/(s _{log}) (m ³	s) 421.917	0.543	Standard deviation $(s_h)/(s_{hlog})$ (m^3/s)	421.917	0.543		
14	Coefficient of variation (c _v)/(c _{vlo}) 1.059	0.231	Coefficient of variation $(c_{vh})/(c_{vhlog})$	1.059	0.231		
15	Skewness (g)/(g _{log})	2.571	-0.814	-0.814 Skewness (g _h)/(g _{hlog}) 2.		-0.814		
16			HISTORICALLY W	EIGHTED VARIABLES				
17	Weight applied to data (W _T)		1.000	Sum of peaks equal to or above the h	igh threshold (Σx_a)			
18	Floods equal to or above the hi	h threshold (N _A)	0	Sum of peaks below the high thresho	ld (Σx _b)	23899.327		
19	Floods between high and low th	resholds (N _B)	60	Sum of the deviations of x_a (Σd_a)				
20	Low outliers including zero flow	; (L _W)	0	Sum of the deviations of x_b (Σd_b)		3240.806		

Figure 35: Probabilistic Methods (AMS) worksheet and conservation statistics

Theoretical probability distributions:

The theoretical probability distributions available in the DFET are either based on Mean Moments (MM) and/or Linear Moments (LM) parameter estimators. The following theoretical probability distributions are based on MM parameter estimation:

Normal (N/MM) distribution:

$$Q_T = \overline{x} - sy \tag{72}$$

Extreme Value Type I (EV1/MM) distribution:

$$Q_T = \overline{x} + s(0.781W_T - 0.451) \tag{73}$$

Extreme Value Type II (EV2/MM) distribution:

$$Q_T = \overline{x} + \sqrt{\frac{s^2}{\operatorname{var}(y)}} (1 - E(y) - kW_T)$$
(74)

Extreme Value Type III (EV3/MM) distribution:

$$Q_T = \bar{x} + \sqrt{\frac{s^2}{\text{var}(y)}} \left(-1 + E(y) + kW_T \right)$$
(75)

Log-Normal (LN/MM) distribution:

$$Q_T = anti \log \left[\overline{\log(x)} + s_{\log} W_T \right]$$
(76)

Log-Extreme Value Type I (LEV1/MM) distribution:

$$Q_T = anti \log \left[\overline{\log(x)} + s_{\log}(0.781 W_T - 0.451) \right]$$
(77)

Log-Pearson Type III (LP3/MM) distribution:

$$Q_T = anti \log \left[\overline{\log(x)} + s_{\log} W_T \right]$$
(78)

The following theoretical probability distribution is based on LM parameter estimation. It is not included in the *Probabilistic Methods (AMS)* worksheet, but available as an option in the *Probabilistic Plotting* worksheet for comparison purposes:

Generalised Logistic (GLO/LM) distribution:

$$Q_T = Q_{Med} \left[1 + \frac{\beta}{k} \left(1 - (T - 1)^{-k} \right) \right]$$
(79)

with:

$$\beta = \frac{t_2 k \sin(\pi k)}{k \pi (k + t_2) - t_2 \sin(\pi k)}$$
(79a)
$$k = -t_3$$
(79b)

$$t_{2} = \frac{2\left[\frac{1}{N}\sum_{m=2}^{N}\frac{(m-1)}{(N-1)}Q_{m}\right] - \bar{x}}{\bar{x}}$$
(79c)

$$t_{3} = \frac{6\left[\frac{1}{N}\sum_{m=3}^{N}\frac{(m-1)(m-2)}{(N-1)(N-2)}Q_{m}\right] - 6\left[\frac{1}{N}\sum_{m=2}^{N}\frac{(m-1)}{(N-1)}Q_{m}\right] + \bar{x}}{2\left[\frac{1}{N}\sum_{m=2}^{N}\frac{(m-1)}{(N-1)}Q_{m}\right] - \bar{x}}$$
(79d)

where:

E(y) = mean of the standardised variate,

k = shape parameter,

m = number, in ascending order, of the ranked events (peak flows),

N = number of observations/record length [years],

 Q_m = ranked annual maximum flood peak [m³/s],

 Q_{Med} = median annual maximum flood peak [m³/s],

 Q_T = peak flow for *T*-year return period [m³/s],

s = standard deviation of observed values $[m^3/s]$,

$$s_{log}$$
 = standard deviation of the observed value logarithms [m³/s],

T = return period [years],

var(y) = variance of the standardised variate,

 W_T = frequency factor for *T*-year return period or LN standard variate,

$$\overline{x}$$
 = mean of observed values [m³/s], and

y = standardised variate.

An example of the *Probabilistic Methods (AMS)* worksheet containing the theoretical probability distribution results is shown in Figure 36.

Flood Hydrology Course 22- 24 May 2023

4	А	В	С	D	E	F	G	Н	
1	НОМЕ	ANNUAL	. MAXIMUM ERIES	PROBA	BILISTIC	METHODS (AMS)	PROBABILISTIC	METHODS (PDS)	
2	Secondary dra	inage region num	iber	C5	PRINT	Main watercourse/river	Modder River		
3	Tertiary draina	ge region numbe	r	C52		Designed		OJ Gericke	
4	Quaternary dra	ainage region nun	nber	C52A- G		Checked		JA du Plessis	
5	Catchment des	cription		Krugersdrift I	Dam	Date		June 15, 2009	
6	Flow-gauging	station name		Krugersdrift I	Dam	Flow-gauging station number		C5R004	
21			THE	ORETICAL	PROBAB	ILITY DISTRIBUTIONS (m ³ /s)			
22	Return period				MISS	ING DATA EXCLUDED			
23	(T, years)	N/MM	EV1/MM	EV2	?/MM	LN/MM	LEV1/MM	LP3/MM	
32	1.25	43	51	8	38	78	80	84	
33	2	398	329	3	02	225	183	266	
34	5	753	702	6	37	643	553	654	
35	10	939	949	8	93	1114	1149	961	
36	20	1092	1187	11	168	1755	2321	1266	
37	50	1265	1494	16	571	2925	5764	1654	
38	100	1380	1724	19	913	4112	11393	1933	
39	200	1485	1953	22	293	5617	22476	2195	
40	500	1613	2256	28	359	8197	55069	2515	
41	1000	1702	2484	33	343	10685	108319	2736	
42	Return period				MISS	ING DATA INCLUDED			
43	(T, years)	N/MM	EV1/MM	EV2	2/MM	LN/MM	LEV1/MM	LP3/MM	
52	1.25	43	51	8	38	78	80	84	
53	2	398	329	3	02	225	183	266	
54	5	753	702	6	37	643	553	654	
55	10	939	949	8	93	1114	1149	961	
56	20	1092	1187	11	168	1755	2321	1266	
57	50	1265	1494	16	571	2925	5764	1654	
58	100	1380	1724	19	913	4112	11393	1933	
59	200	1485	1953	22	293	5617	22476	2195	
60	500	1613	2256	28	359	8197	55069	2515	
61	1000	1702	2484	33	343	10685	108319	2736	

Figure 36: Theoretical probability distribution results based on the AMS

3.3 Raw Flow Data (Partial Duration Series)

3.3.1 Pre-requisite input and linked worksheets

The Annual Maximum Series worksheet is a pre-requisite input for this worksheet. The Raw Flow Data worksheet is also linked to the Partial Duration Series and Probabilistic Methods (PDS) worksheets.

3.3.2 Input ranges and comments

Input range identifier:

Single cell entry (light-green shaded and unprotected) and cell range entries (no defined cell format). Click and hold the mouse cursor in position to read any comment box (cells with red flags).

Note:

The maximum monthly peak flows as obtained from the Department of Water Affairs (DWA) monthly flood peak database must be copied into *cell range D9:O208*. A maximum period of 200 years can be used. Use *Copy & Paste values* to retain the cell format. Enter the start date (year) of the data period in *cell A9*.

Cell A9: Click and hold the mouse cursor in position. <u>Comment:</u> "Enter the start date (year) of data period." *Cell range D9:O208:* Copy the maximum monthly peak flows into this cell range or a part thereof. Use *Copy & Paste values* to retain the cell format.

3.3.3 Calculation procedure

Not applicable, since this worksheet is only used for data management.

3.4 Partial Duration Series (PDS)

3.4.1 Pre-requisite input and linked worksheets

The *Catchment Information* and *Raw Flow Data* worksheets are pre-requisite input for this worksheet. The *Partial Duration Series* worksheet is also linked to the *Probabilistic Methods (AMS & PDS)* worksheets.

3.4.2 Input ranges and comments

Input range identifier:

Single cell entry (light-green shaded and unprotected) and a group box (drop-down list). The group box contains the various plotting position methods and associated theoretical probability distributions. Click and hold the mouse cursor in position to read any comment box (cells with red flags).

Cell B9: Click and hold the mouse cursor in position. The following comment box related to the use of threshold exceedance values will appear on screen:

IF THE NUMBER OF PEAK YEARS (CELL B9) IS LEFT EMPTY, THE NUMBER OF PEAKS EQUAL TO THE NUMBER OF DATA YEARS (CELL B8) WILL BE USED FOR THE CALCULATIONS.

IN ORDER TO MAKE USE OF A THRESHOLD EXCEEDANCE VALUE (EXCLUSION OF PEAKS ABOVE THE STRUCTURAL LIMIT, CELLS B7 or D7), THE USER CAN ENTER A NUMBER OF PEAK YEARS (CELL B9) LESS THAN THE NUMBER OF DATA YEARS (CELL B8).

Cell A10: Select the appropriate plotting position method from the group box (dropdown list, 6 options available) to establish the plotting constants in *cells D8* (a) and *D9* (b) respectively.

3.4.3 Calculation procedure

The calculation procedure used to establish the return period of each ranked peak flow within *N*-years will be discussed in Section 3.6.

An example of the *Partial Duration Series* worksheet illustrative of above-listed instructions is shown in Figure 37.

	A	В	С	D		
1	HOME RAW FLOW DA	TA PARTIAL DUR	ATION SERIES PROBABILIS	ABILISTIC METHODS (PDS)		
2	Secondary drainage region number	C5	Main watercourse/river	Modder River		
3	Tertiary drainage region number	C52	Designed	OJ Gericke		
4	Quaternary drainage region number	C52A- G	Checked	JA du Plessis		
5	Catchment description	Krugersdrift Dam	Date	June 15, 2009		
6	Flow-gauging station name	Krugersdrift Dam	Flow-gauging station number	C5R004		
7	Structural limit (H, m)		Structural limit (Q, m ³ /s)	3000		
8	Number of data years (N)	60	Plotting constant (a)	0.200		
9	User-input: Number of peak years (N)	35	Plotting constant (b)	0.400		
10	Plotting position method	CUNNANE (General purpose)		-		
11	Rank (m)	Peak flow (m ³ /s)	Ranked peak flow (m ³ /s) within N-years	Return period (T, years)		
12	1	2456.000	2456.000	58.667		
13	2	1642.297	1642.297	22.000		
14	3	1090.075	1090.075	13.538		
15	4	1086.996	1086.996	9.778		
16	5	985.378	985.378	7.652		
17	6	836.000	836.000	6.286		
18	7	792.000	792.000	5.333		
19	8	773.933	773.933	4.632		
20	9	741.000	741.000	4.093		
21	10	687.000	687.000	3.667		
22	11	636.390	636.390	3.321		
23	12	625.000	625.000	3.034		
24	13	616.000	616.000	2.794		
25	14	570.698	570.698	2.588		
26	15	555.302	555.302 555.302			

Figure 37: Partial Duration Series worksheet

3.5 Probabilistic Methods (PDS)

3.5.1 Pre-requisite input and linked worksheets

The *Catchment Information* and *Partial Duration Series* worksheets are pre-requisite input for this worksheet. The *Probabilistic Methods (PDS)* worksheet is also linked to the *Probabilistic Methods (AMS)* and *Probabilistic Plotting* worksheets.

3.5.2 Input ranges and comments

Input range identifier:

Single cell or cell range entries (light-green shaded and unprotected) in the case of "Design Notes," otherwise not applicable. This worksheet is mainly used for calculations.

Design notes:

Cell range

F9:F14: The user can enter any comments/design notes/recommendations in this cell range.

3.5.3 Calculation procedure

Conservation statistics:

Refer to Section 3.2.3.

Theoretical probability distributions:

Refer to Section 3.2.3.

The layout of the Probabilistic Methods (PDS) worksheet is shown in Figure 38.

Flood Hydrology Course 22- 24 May 2023 E ... S

	А	В	С	D	E	F	G	Н		
1	HOME PARTIAL C		DURATION F	ROBAE	BILISTIC	METHODS (PDS)	PROBABILISTIC M	ETHODS (AMS)		
2	Secondary dra	inage region num	iber	C5	PRINT	Main watercourse/river		Modder River		
3	Tertiary draina	ige region numbe	r	C52		Designed		OJ Gericke		
4	Quaternary dra	ainage region nun	nber	C52A- G		Checked		JA du Plessis		
5	Catchment des	cription		Krugersdrift	Dam	Date		June 15, 2009		
6	Flow-gauging	station name		Krugersdrift	Dam	Flow-gauging station number		C5R004		
7				CON	ISERVATIO	N STATISTICS	PROBABILISTIC	PLOTTING		
8		MISSING	DATA EXCLUD	ED		DES	IGN NOTES			
9	Va	riable	Normal data	Log ₁₀ -trans	sformed data					
10	Mean (x _{mean})/Lo	g (x _{mean}) (m³/s)	613.268	2.	.717					
11	Total time span	(Y _T , years)	35		35					
12	Standard deviati	on (s)/(s _{log}) (m ³ /s)	437.606	0.	0.234					
13	Coefficient of va	riation (c _v)/(c _{vlog})	0.714	0.	.086					
14	Skewness (g)/(g	llog)	2.698	0.	.871					
15			THEO	RETICAL	PROBABILI	TY DISTRIBUTIONS (m ³ /s)				
16	Return period				MISSIN	NG DATA EXCLUDED				
17	(T, years)	N/MM	EV1/MM	EV	2/MM	LN/MM	LEV1/MM	LP3/MM		
26	1.25	245	253	2	294	331	334	328		
27	2	613	541	5	512	521	477	482		
28	5	982	929	8	357	820	768	790		
29	10	1174	1185	1	122	1040	1054	1072		
30	20	1333	1431	1	408	1265	1427	1415		
31	50	1512	1749	1	831	1577	2113	1990		
32	100	1631	1988	2	192	1826	2835	2540		
33	200	1740	2226	2	595	2089	3800	3215		
34	500	1873	2540	3	199	2459	5593	4347		
35	1000	1966	2777	3	719	2757	7489	5427		

Figure 38: Layout of the Probabilistic Methods (PDS) worksheet

3.6 Probabilistic Plotting

3.6.1 Pre-requisite input and linked worksheets

The *Catchment Information* and *Probabilistic Methods (AMS & PDS)* worksheets are prerequisite input for this worksheet. The *Probabilistic Plotting* worksheet is also linked to the *Probabilistic Plot (AMS & PDS)* charts.

These charts can be viewed by clicking on either the**PROBABILISTIC PLOT (AMS)** or**PROBABILISTIC PLOT (PDS)**buttons.

3.6.2 Input ranges and comments

Input range identifier:

Single cell and cell range entries (light-green shaded and unprotected), check boxes and group boxes (drop-down lists). Each group box (Probabilistic methods, AMS or PDS) contains the various plotting position methods and associated theoretical probability distributions. Click and hold the mouse cursor in position to read any comment box (cells with red flags).

Design notes:

Cell range

G3:G8: The user can enter any comments/design notes/recommendations in this cell range.

Probabilistic methods (AMS):

- *Cell G11:* Select the appropriate plotting position method from the group box (dropdown list, 6 options available) to establish the plotting constants in *cells F7* (a) and *F8* (b) respectively.
- *Cell C11:* Click and hold the mouse cursor in position. The following comment box related to the source data range ("Ranked AMS" series) will appear on screen:

Figure 39 is illustrative of the Edit Series window that will appear on screen after the steps contained in the above-listed comment box were followed.

Edit Series	? 🛛
Series <u>n</u> ame:	
="Ranked AMS"	= Ranked AMS
Series <u>X</u> values:	
='Ranked_Plot-data'!\$E\$3:\$E\$62 🚺	= 2.3276, 1.9337
Series <u>Y</u> values:	
='Ranked_Plot-data'!\$B\$3:\$B\$62 🚺	= 2456.000, 1642
ОК	Cancel

Figure 39: Edit Series window (*Probabilistic Plot, AMS*)

Hydrological literature frequently emphasises that a regional approach should be adopted when the observed flood peak data at a single site are insufficient for frequency analysis. However, in recognition of the practising engineers' possible time and human resource constraints to implement an extensive regional approach, two single-site approaches were included to assist the focus user group of the DFET. These two approaches are respectively referred to as the SRAM (*c.f.* Section 3.1.3) and the Mean Logarithm Value Approach (MLVA).

The MLVA (Equation 82, Section 3.6.3) is based on the combination of the mean values of the logarithms of two or more probability distributions at a single site and could be used to establish the applicability of theoretical probability distributions to specific return period ranges, *e.g.* the LP3 fits the lower recurrence interval values better and the GEV the rest. It could also improve design flood estimations based on the AMS at a single site characterised by insufficient record lengths *e.g.* missing data, low outliers and flood peaks exceeding the hydraulic capacity of flow-gauging structures. These insufficient record lengths are likely to make it impossible to conclusively select a **single** probability distribution that could consistently provide flood frequency estimates for return periods much greater than the period of record.

The DFET procedure to establish and select the most applicable theoretical probability distribution(s) to specific return period ranges, is highlighted in following paragraphs:

Cell range

D12:112: The check boxes "Included" enable the user to select or exclude a particular theoretical probability distribution (*cell range D15:115*, column headings) from being included in Equation 82 and subsequently plotted on the *Probabilistic Plot (AMS)* chart.

Cell range

D13:113: The user must enter the maximum return period in which a particular theoretical probability distribution must be taken into consideration. The following applies:

- *Cell D13:* <u>Comment</u>: "Enter the maximum return period (1.25- 1 000 years) in which the EV1/MM must be taken into consideration."
- *Cell E13:* <u>Comment</u>: "Enter the maximum return period (1.25- 1 000 years) in which the EV2/MM or EV3/MM must be taken into consideration."
- *Cell F13:* <u>Comment</u>: "Enter the maximum return period (1.25- 1 000 years) in which the LN/MM must be taken into consideration."
- *Cell G13:* <u>Comment</u>: "Enter the maximum return period (1.25- 1 000 years) in which the LEV1/MM must be taken into consideration."
- *Cell H13:* <u>Comment</u>: "Enter the maximum return period (1.25- 1 000 years) in which the LP3/MM must be taken into consideration."
- *Cell 113:* <u>Comment</u>: "Enter the maximum return period (1.25- 1 000 years) in which the GLO/LM must be taken into consideration."

Cell range

- *D14:114:* The user must enter the minimum return period in which a particular theoretical probability distribution must be taken into consideration. The following applies:
- *Cell D14:* <u>Comment</u>: "Enter the minimum return period (1.25- 1 000 years) in which the EV1/MM must be taken into consideration."
- *Cell E14:* <u>Comment</u>: "Enter the minimum return period (1.25- 1 000 years) in which the EV2/MM or EV3/MM must be taken into consideration."
- *Cell F14:* <u>Comment</u>: "Enter the minimum return period (1.25- 1 000 years) in which the LN/MM must be taken into consideration."
- *Cell G14:* <u>Comment</u>: "Enter the minimum return period (1.25- 1 000 years) in which the LEV1/MM must be taken into consideration."
- *Cell H14:* <u>Comment</u>: "Enter the minimum return period (1.25- 1 000 years) in which the LP3/MM must be taken into consideration."
- *Cell 114:* <u>Comment</u>: "Enter the minimum return period (1.25- 1 000 years) in which the GLO/LM must be taken into consideration."

Probabilistic methods (PDS):

- *Cell G29:* Select the appropriate plotting position method from the group box (dropdown list, 6 options available) to establish the plotting constants in *cells F7* (a) and *F8* (b) respectively.
- *Cell C29:* Click and hold the mouse cursor in position. The following comment box related to the source data range ("Ranked PDS" series) will appear on screen:

Figure 40 is illustrative of the Edit Series window that will appear on screen after the steps contained in the above-listed comment box were followed.

Figure 40: Edit Series window (Probabilistic Plot, PDS)

The DFET procedure to establish and select the most applicable theoretical probability distribution(s) to specific return period ranges, is highlighted in following paragraphs:

Cell range

D30:130: The check boxes "Included" enable the user to select or exclude a particular theoretical probability distribution (*cell range D33:133*, column headings) from being included in Equation 82 and subsequently plotted on the *Probabilistic Plot (PDS)* chart.

Cell range

- *D31:I31:* The user must enter the maximum return period in which a particular theoretical probability distribution must be taken into consideration. The following applies:
- *Cell D31:* <u>Comment</u>: "Enter the maximum return period (1.25- 1 000 years) in which the EV1/MM must be taken into consideration."
- *Cell E31:* <u>Comment</u>: "Enter the maximum return period (1.25- 1 000 years) in which the EV2/MM or EV3/MM must be taken into consideration."
- *Cell F31:* <u>Comment</u>: "Enter the maximum return period (1.25- 1 000 years) in which the LN/MM must be taken into consideration."
- *Cell G31:* <u>Comment</u>: "Enter the maximum return period (1.25- 1 000 years) in which the LEV1/MM must be taken into consideration."
- *Cell H31:* <u>Comment</u>: "Enter the maximum return period (1.25- 1 000 years) in which the LP3/MM must be taken into consideration."
- *Cell 131:* <u>Comment</u>: "Enter the maximum return period (1.25- 1 000 years) in which the GLO/LM must be taken into consideration."

Cell range

- *D32:132:* The user must enter the minimum return period in which a particular theoretical probability distribution must be taken into consideration. The following applies:
- *Cell D32:* <u>Comment</u>: "Enter the minimum return period (1.25- 1 000 years) in which the EV1/MM must be taken into consideration."

- *Cell F32:* <u>Comment</u>: "Enter the minimum return period (1.25- 1 000 years) in which the LN/MM must be taken into consideration."
- *Cell G32:* <u>Comment</u>: "Enter the minimum return period (1.25- 1 000 years) in which the LEV1/MM must be taken into consideration."
- *Cell H32:* <u>Comment</u>: "Enter the minimum return period (1.25- 1 000 years) in which the LP3/MM must be taken into consideration."
- *Cell I32:* <u>Comment</u>: "Enter the minimum return period (1.25- 1 000 years) in which the GLO/LM must be taken into consideration."

3.6.3 Calculation procedure

Plotting position methods:

$$T = \frac{n+a}{m-b} \tag{80}$$

where:

- T = return period [years],
- a = constant [Table 5],
- b = constant [Table 5],
- m = number, in descending order, of the ranked events (peak flows), and
- *n* = number of observations/record length [years].

Method		Plotting position	Theoretical probability distribution			
Beard	(1962)	a = 0.40 and $b = 0.30$	Pearson Type 3			
Blom	(1958)	a = 0.25 and $b = 0.375$	Normal			
Cunnane	(1978)	a = 0.20 and $b = 0.40$	General purpose			
Greenwood	(1979)	a = 0.00 and $b = 0.35$	GEV and Wakeby			
Gringorten	(1963)	a = 0.12 and $b = 0.44$	Extreme Value Type 1, GEV and Exponential			
Weibull	(1939)	a = 1.00 and $b = 0.00$	Normal and Pearson Type 3			

 Table 5: Common plotting position methods (SANRAL, 2006)

Probabilistic methods and plotting (AMS & PDS):

$$P = \frac{1}{T}$$

$$Q_P = 10 \exp\left[\frac{\log[(Q_i)(Q_{i+1})....(Q_N)]}{N}\right]$$
(81)
(82)

where:

= probabilistic peak flow based on the MLVA $[m^3/s]$, Q_P

Ν

Р = probability of annual exceedance [fraction],

= number of probability distributions used, Ν

 $Q_{i,i+1}$ = peak flows based on a recognised theoretical probability distribution, with a minimum of two probability distributions used in combination $[m^3/s]$, and

Τ = return period [years].

The individual peak flows (Q_i) in Equation 82 can either be based on the combination of two or more theoretical probability distributions, e.g. LN, LP3, GEV and/or GLO distributions. The DWA, Directorate: Flood Studies recommends and use Equation 82 in their flood studies and safety evaluation of dams (Van der Spuy and Rademeyer, 2010).

Examples of the Probabilistic Plotting worksheet illustrative of above-listed instructions and calculation procedures applicable to the AMS and PDS are shown in Figures 41 and 42 respectively, while the AMS and PDS probabilistic charts (plotting results) are shown in Figures 43 and 44, respectively.

Flood Hydrology Course 22- 24 May 2023

	A	В	C	D	E	F	G	н	1	j.
4	HOME PROBABILISTIC PLOTTING METHODS AND INFORMATION									
2	econdary drai	nage region number	C5	Main watercourse/riv	ver	Modder River		DESIGN	NOTES	
3	ertiary drainag	e region number	C52	Designed		OJ Gencke				
4 0	uaternary dra	nage region number	C52A- G	Checked		JA du Plessis				
5 0	atchment des	cription	Krugersdrift Dam	Date		June 15, 2009				
6		DATA RECOR	RD LENGTH (N, years) and I	PLOTTING CONST	ANTS (a & b)					
7 1	nnual maximu	n series: Record length (N)	60	Plotting constant (a)		0.200				
8 1	artial duration	series: Record length (N)	35	Plotting constant (b)		0.400				
9			PI	ROBABILISTIC I	METHODS (A	NNUAL MAXIMUM	SERIES)			
10	OURCE DATA	RANGE ["Ranked AMS" series	a (B3:B202,E3:E202)]	MEAN LOGARITHM VALUE APPROACH (MLVA) Plotting position m				sition method	a method	
11	ND-VALUE OF	DATA PLOT RANGE (B, E):	62	PROBABILISTIC ANA	PROBABILISTIC ANALYSIS (AMS) PROBABILISTIC PLOT (AMS) (UNNAVE (Guneral purpose)					
12		PROBABILITY DISTRIBUTION	N(S) TO BE INCLUDED		DINCLUDED	D INCLUDED	DIRCLUDED	SIICLUDED	DICLUDED	
13	Return period	PROBABILITY DISTRIBUTION	RANGE (T. years) MAXIMUM	1000	1000	1000	1000	20	1000	
14			MINIMUM	1.25	1.25	1.25	1.25	1.25	20	MLVA Q ₂ (m ³ /s)
15	1124 0002302	Exceedance probability	Log-Normal	EV1/MM	EV2/MM	LN/MM	LEV1/MM	LP3/MM	GLO/LM	
16	(1, years)	(decimal)	Standard variate (Wns)	(m ² /s)	(m ³ /s)	(m ¹ /s)	(m ³ /s)	(m ² /a)	(m ² /s)	
17	1.25	0.800	-0.842	51	104	78	80	84	119	84
18	2	0 500	0 000	329	302	225	183	266	317	266
19	5	0.200	0.842	702	637	643	553	654	637	654
20	10	0.100	1.282	949	893	1114	1149	961	910	961
21	20	0.050	1.645	1187	1168	1755	2321	1266	1241	1253
22	50	0.020	2.054	1494	1571	2925	5784	1654	1807	1807
23	100	0.010	2.326	1724	1913	4112	11393	1933	2366	2366
24	200	0.005	2.576	1953	2293	5617	22476	2195	3075	3075
25	500	0.002	2.878	2256	2859	8197	55069	2515	4317	4317
28	1000	0.001	3.090	2484	22.42	10895	109310	2728	5550	5559

Figure 41: Example illustrating the MLVA based on Equation 82 (AMS)

	A	В	C	D	E	F	G	н	l.	J
4	но	ME <u>PRINT</u>	PROBABIL	ILISTIC PLOTTING METHODS AND INFORMATION						
2	Secondary drain	nage region number	C5	Main watercourse/riv	/er	Modder River		DESIGN	INOTES	
3	Tertiary drainag	e region number	C52	Designed		OJ Gencke				
.4	Quaternary drai	nage region number	C52A- G	Checked		JA du Plessis				
5	Catchment desc	cription	Krugersdrift Dam	Date		June 15, 2009				
6		DATA RECOR	D LENGTH (N. years) and I	PLOTTING CONST	ANTS (a & b)					
7	Annual maximur	n series: Record length (N)	60	Plotting constant (a)		0.200				
8	Partial duration	series: Record length (N)	35	Plotting constant (b)		0.400				
27			PR	OBABILISTIC N	ETHODS (PAR	TIAL DURATION	SERIES)			
28	SOURCE DATA	RANGE ["Ranked PDS" series	(O3:O2402,R3:R2402)]	MEAN LOGARITHM VALUE APPROACH (MLVA)			Plotting position method			
29	END-VALUE OF	DATA PLOT RANGE (O, R):	37	PROBABILISTIC ANALYSIS (PDS) PROBABILISTIC PLOT (PDS)			CUMMANE (General purpose)			
30		PROBABILITY DISTRIBUTION	I(S) TO BE INCLUDED		D INCLUDED	INCLUDED	BICLUDED	INCLUDED	INCLUDED	
31	Return period	PROBABILITY DISTRIBUTION	RANGE (T. years) MAXIMUM	1000	1000	1000	1000	20	1000	
32			MINIMUM	1.25	1.25	1.25	1.25	1.25	1.25	MLVA Q ₂ (m ² /s)
33	it was it	Exceedance probability	Log-Normal	EV1/MM	EV2/MM	LN/MM	LEV1/MM	LP3/MM	GLO/LM	
34	(1, years)	(decimal)	Standard variate (Wnn)	(m ³ /s)	(m ² /s)	(m ² /s)	(m ³ /s)	(m ³ /s)	(m ² /s)	
35	1.25	0.800	-0.842	253	321	331	334	328	319	323
36	2	0.500	0.000	541	512	521	477	482	466	474
37	5	0 200	0.842	929	857	820	768	790	733	761
38	10	0.100	1.282	1185	1122	1040	1054	1072	981	1026
39	20	0.050	1.645	1431	1408	1285	1427	1415	1301	1357
40	50	0.020	2.054	1749	1831	1577	2113	1990	1886	1886
41	100	0.010	2.326	1988	2192	1826	2835	2540	2504	2504
42	200	0.005	2.576	2226	2595	2089	3800	3215	3332	3332
43	500	0.002	2.878	2540	3199	2459	5593	4347	4882	4882
44	1000	0.001	3.090	2777	3719	2757	7489	5427	6533	6533

Figure 42: Example illustrating the MLVA based on Equation 82 (PDS)

PROBABILISTIC PLOTTING PROBABILISTIC PLOT: ANNUAL MAXIMUM SERIES **PLOT** HOME Return period (years) 10 20 50 100 1000 10000 2 1.25 5 10000 ed AMS AMS: EV1/MM AMS: GEV/MM AMS: LEV1/MM AMS: LP3/MM MS: GLO/LM AMS: MEVA 000 (m³/s) 0 100 0.5 0.2 0.02 0.01 0.001 0.8 0.1 0.05 0.0001 Exceedance probability

Flood Hydrology Course 22- 24 May 2023

Figure 43: Probabilistic plot based on the ranked AMS and Cunnane plotting position

Figure 44: Probabilistic plot based on the ranked PDS and Cunnane plotting position

4. SUMMARY

4.1 Summary Report

The **SUMMARY** and **SUMMARY PLOT** buttons can be used to view and examine the design flood estimation results summarised in both a tabular and graphical format. The summary in tabular format is shown in Figure 45, while the summary plot (chart) is illustrated in Figure 46.

	A	В	С	D		E	F	G	Н	I
1	H	HOME SUMMARY PLOT SUM		MARY OF RE	IARY OF RESULTS					
2	Catchment des	scription		Krugersdrift Dan	n		MAP (mm)		518	
3	Catchment cla	ssification		Inland/summer	rainfall and fla	at & permeable	Flow-gauging	station	C5R004	
4	Size of catchm	nent (A, km ²)		6331.0			Designed		OJ Gericke	
5	Main watercou	urse/river		Modder River			Date		JA du Plessis	
6					DESIGN FL	LOOD ESTIMATI	ON RESUL	TS		
7				I	DETERMINI	STIC METHODS				DESIGN NOTES
8	Return period					Peak flow (m ³ /s)				
9	(T, years)	F	2M	ARI	N	SCS	SDF	SUH	LRH	
10	2	2	45	308	}	313	236	236	223	
11	5	3	63	451		560	710	393	365	
12	10	4	97	570	i	756	1134	572	535	
13	20	6	78	735	j –	966	1618	804	751	
14	50	1()75	105	7	1272	2402	1222	1134	
15	100	1	576	140	9	1523	3129	1695	1590	
16	200	2'	108	189	1	1794	3966	2052	1933	
17					EMPIRIC	AL METHODS				
18	Return period					Peak flow (m ³ /s)				
19	(T, years)	M	IPI	CAP	Α	Q _T /Q _{RMF} ratio	RMF			
20	2			206			Francou-Rodier		Kovács	
21	5			463	3					
22	10	8	94	(11	4		ł			
23	20	1/	1/18	102	4	3400	6928		7045	
25	100	18	329	196	+ 2	4097				
26	200			237	3	4796	1			
27				PR	OBABILISTI	C METHODS (AM	S)			
28	Return period					Peak flow (m ³ /s)				
29	(T, years)	N/MM	EV1/MM	EV2/I	лм	LN/MM	LEV1/MM	LP3/MM	GLO/LM	MLVA Q _P
30	2	398	329	302	2	225	183	266	317	266
31	5	753	702	637		643	553	654	637	654
32	10	939	949	893	5	1114	1149	961	910	961
33	20	1092	1187	116	წ	1/55	2321	1266	1241	1253
34	50	1265	1494	15/	1	2925	5/64	1654	1807	1807
35	100	1380	1/24	191	<u>ა</u>	4112	11393	1933	2366	2366
36	200	1460	1953	229		0017	22476	2195	3070	3070
37	Determined			PR	OBABILIS II	IC METHODS (PD:	5)			
38	Keturn period		E3 (4 (3 3 5 5	E1 10 17		Peak flow (m ⁻ /s)		1.00/000	010/111	
39	(1, years)	N/MM	EVI/MM	EV2/I	NIN	LN/MM		LP3/MM	GLU/LM	MEVA Qp
40	2	613	020	514	<u> </u>	920	4//	482	400	4/4
41		902	323	100	2	020	100	190	133	101
42	10	11/4	1/00	112	<u>د</u>	1040	1034	1072	301	1020
43	50	1555	1431	140	1	1203	1421	1413	1301	1996
44	100	1012	1099	103	י ז	1077	2113	2540	2504	2504
45	200	1740	2226	213	<u>د</u> ۶	2089	3800	3215	3332	3332
43 44 45	20 50 100	1333 1512 1631	1431 1749 1988	140 183 219	8 1 2	1265 1577 1826	1427 2113 2835	1415 1990 2540	1301 1886 2504	1357 1886 2504
46	200	1/40	2226	259	5	2089	3800	3215	3332	3332

Figure 45: Summary of results (tabular format)

4.2 Summary Plot

Figure 46: Summary of results (chart)

5. **REFERENCES**

The following list of references reflects the most prominent sources used during the development of the DFET:

- Adamson, PT.1981. *Southern African Storm Rainfall*. Technical Report TR102. Department of Environmental Affairs, Pretoria, RSA.
- Alexander, WJR. 1980. Depth-Area-Duration-Frequency Properties of Storm Precipitation in South Africa. Technical Report TR103. Department of Water Affairs and Forestry, Pretoria, RSA.
- Alexander, WJR. 1990. Flood Hydrology for Southern Africa. SANCOLD, Pretoria, RSA.
- Alexander, WJR. 2001. Flood Risk Reduction Measures: Incorporating Flood Hydrology for Southern Africa. Department of Civil and Biosystems Engineering, University of Pretoria, Pretoria, RSA.
- Alexander, WJR. 2002. The standard design flood. *Journal of the South African Institution of Civil Engineering* 44(1):26-30.
- Bauer, SW and Midgley, DC. 1974. A Simple Procedure for Synthesizing Direct Runoff Hydrographs. Hydrological Research Unit, University of Witwatersrand, Johannesburg, RSA.
- Chadwick, AJ and Morfett, JC. 2004. *Hydraulics in Civil and Environmental Engineering*. (4th ed.). E & FN Spon, Chapman and Hall, London, UK.
- Cullis, J, Görgens, AHM and Lyons, S. 2007. Updated Guidelines and Design Flood Hydrology Techniques for Dam Safety. WRC Report No. 1420/1/07. Water Research Commission, Cape Town, RSA.
- ESRI (Environmental Systems Research Institute). 2006. ArcGIS Desktop Help: Spatial Analyst Slope Algorithm.
- Francou, J and Rodier, JA. 1967. Essai de classification des crues maximales. In: *Proceedings*, Leningrad Symposium on Floods and their Computation. UNESCO, August 1967.
- Gericke, OJ. 2010. Evaluation of the SDF Method using a customised Design Flood Estimation Tool. Unpublished MSc Eng Dissertation, Department of Civil Engineering, University of Stellenbosch, Stellenbosch, RSA.

- HRU (Hydrological Research Unit). 1972. Design Flood Determination in South Africa. HRU Report No. 1/72. Hydrological Research Unit, University of the Witwatersrand, Johannesburg, RSA.
- Kite, GW. 1988. *Frequency and Risk Analysis in Hydrology*. (Revised ed.). Water Resources Publications, Littleton, Colorado, USA.
- Kjeldsen, TR and Jones, DA. 2004. Sampling variance of flood quantiles from the generalised logistic distribution estimated using the method of L-Moments. *Hydrology and Earth System Sciences* 8: 183-190.
- Kovács, ZP. 1988. *Regional Maximum Flood Peaks in South Africa*. Technical Report TR137. Department of Water Affairs, Pretoria, RSA.
- Madsen, H, Pearson, CP and Rosbjerg, D. 1997. Comparison of annual maximum series and partial duration series methods for modelling extreme hydrologic events. *Water Resources Research* 33: 759-769.
- Midgley, DC and Pitman, WV. 1978. A Depth-Duration-Frequency Diagram for Point Rainfall in Southern Africa. HRU Report No. 2/78. Hydrological Research Unit, University of the Witwatersrand, Johannesburg, RSA.
- Pilgrim, DH and Cordery, I. 1993. Flood runoff. In: ed. Maidment, DR, Handbook of Hydrology. McGraw-Hill, New York, USA.
- Pitman, WV and Midgley, DC. 1967. Flood studies in South Africa: Frequency analysis of peak discharges. *Transactions of South African Institution of Civil Engineers*, August, 1967.
- Pitman, WV and Midgley, DC. 1971. Amendments to Design Flood Manual HRU 4/69. HRU Report No. 1/71. Hydrological Research Unit, University of the Witwatersrand, Johannesburg, RSA.
- Rademeyer, PF. 2010. *Personal communication*. Department of Water Affairs, Directorate Flood Studies, Pretoria, RSA, 10 May 2010.
- SANRAL (South African National Roads Agencyu Limited). 2006. *Drainage Manual* (5th ed.). South African National Roads Agency Limited, Pretoria, RSA.
- SAWB (South African Weather Bureau). 1992. Climate tables of South Africa. SAWB Publication WB 42. South African Weather Bureau, Pretoria, RSA.
- Schulze, RE, Schmidt, EJ and Smithers, JC. 1992. SCS-SA User Manual: PC-Based SCS Design Flood Estimates for Small Catchments in Southern Africa. ACRU Report No. 40.

Agricultural Catchments Research Unit, Department of Agricultural Engineering, University of Natal, Pietermaritzburg, RSA.

- Smithers JC and Schulze RE. 2000a. Development and Evaluation of Techniques for Estimating Short Duration Design Rainfall in South Africa. Report No. 681/1/00. Water Research Commission, Pretoria, RSA.
- Smithers, JC and Schulze, RE. 2000b. Long Duration Design Rainfall Estimates for South Africa. Report No. 811/1/00. Water Research Commission, Pretoria, RSA.
- Smithers, JC and Schulze, RE. 2003. Design Rainfall and Flood Estimation in South Africa.WRC Report No. 1060/01/03. Water Research Commission, Pretoria, RSA.
- Smithers, JC and Schulze, RE. 2004. The estimation of design rainfall for South Africa using a regional scale invariant approach. *Water SA* **30** (4) 435-444.
- Van Bladeren, D. 2005. Verification of the proposed Standard Design Flood (SDF). SRK Consulting Engineers and Scientists. Report No. 344512/1. SRK, Pretoria, RSA.
- Van der Spuy and Rademeyer, PF. 2010. *Flood Frequency Estimation Methods as Applied in the Department of Water Affairs*. Department of Water Affairs, Pretoria, RSA.